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1st paradigm:	
Empirical	
science

2nd paradigm:	
Model-based	
theoretical	
science

3rd paradigm:	
Computational	
science	
(simulations)

4th paradigm:	
(Big)	data	
driven	science
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Outline
• Why Now?

• AI for Science Premise

• Integration approaches for AI in Discovery Paradigms 

• Examples
• Materials

• Climate understanding

• Cosmology

• What’s Next? 



Development 1: HPC + 
Accelerators



Development 2: Democratization 
via Cloud Computing



Development 3: 
ML/AI 
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AI Core - Deep Learning



Types of Deep Learning Networks

Fully connected network (MLP)

Generative adversarial network (GAN)

Convolutional neural network (CNN)

Recurrent neural network (RNN)



AI Premise for Science (and Design) 
•Accelerate scientific discoveries by 

•Enabling multiple paradigms to work in concert by 
accentuating their strengths and overcoming their 
limitations via Machine Learning

•A Virtuous Relationship

•HPC:  Enables AI/ML and Big Data Science

•AI/ML: Accelerates HPC systems designs

•Cloud: Makes HPC and ML available to 
everyone

•HPC+AI: Enables Simulations and Data Science 
to work in concert

•accelerating discoveries,

•prioritizing experiments, designs

•Complements human strengths



Theory/Model Driven 
Point Workflow

Theory/Model

Simulations

Experiments/Observations



Theory/Model Driven 
Point Workflow => Point 
Solution

Theory/Model

Simulations

Experiments/Observations



Experiment/Observation 
Driven Point Workflow

Experiments/Observations

Theory/Model

Simulations



Experiment/Observation 
Driven Point Workflow

Experiments/Observations

Theory/Model

Simulations



So, what doors 
does AI open?



What doors does AI open?

•Accelerate discovery of “known unknowns” by leveraging data 
generated via model-driven point workflows 
•Transforms model-driven science to a predictive modeling science

•E.g., Discovering properties of materials

•Accelerate discovery of “unknown unknowns” where development of 
models is difficult, or experiments are infeasible or very expensive
•Transforms top-down science to a bottom-up discovery process

•E.g., Inverse models or goal-based designs, learning from data

•Enables generation of artificial data closely mimicking reality

•E.g., Cosmology



AI/ML for Science

Multiple Theory/Model

Data from Thousands of Simulations + experiments/observations

AI/ML - Predictive Modeling

Insights

New Experiments or Simulations



Examples

•Material Science and Design

•Climate Understanding

•Cosmology



PSPP Relationships in Materials

Inverse Problem



Single AI/ML step applicable to multiple 
design problems

•Data
•Hundreds of thousands of DFT calculations  
(e.g., OQMD)
•Composition-based models
•145 attributes (stoichiometric/ 
elemental/electronic/ionic)
•Mean Electronegativity
•Bond Ionic Character… (148+ properties)

•Structure-aware models
•Voronoi tessellations to capture local 
environment of atoms
• Inverse models
•Stable compounds, metallic glasses, 
semiconductors?

Online Tool: http://info.eecs.northwestern.edu/FEpredictor

http://info.eecs.northwestern.edu/FEpredictor


AI/ML for Science – Materials Property Prediction

Density Functional Theory (Structure-aware models)

Data from Thousands of DFT Simulations  (Unexploited knowledge base)

AI/ML - Predictive Modeling                   (Learn model for property of interest)

Insights                                                       (Quick, Prioritize)

Experiments or Simulations



Semiconductors – E.g., Formation Energy

Fingerprint of entire 
unexplored ternary 
composition space! 
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Inference Engine



Highly	Stable	
Potential	
Candidates

Compound	
DiscoveryPredictive	

Model

Formation	
Energy	

Prediction

Rank	
predictions

Experiments/
DFT	

Computation

Materials	Dataset
(OQMD)

Conventional	Approach

Proposed	Approach	 (Deep	Learning)

Feature	Engineering	to	
include	Domain	
Knowledge

(Physical	 Attributes)

Machine	Learning
(Random	Forest,	SVM,	Kernel	

Regression,	etc.)

Predictive	
Model

Millions	 of	
candidate	

compositions	 of	
material	system	
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§ ML models need domain knowledge
§ ElemNet learns from elemental compositions only
§ Captures the similarity and chemical interactions between different elements.
§ Better accuracy at two order of magnitude faster rate than traditional ML model
§ Fast and robust combinatorial screening in huge composition space of billions of compounds.

D. Jha, L. Ward, A. Paul, W.-keng Liao, A. Choudhary, C. Wolverton, and A. Agrawal, “ElemNet: Deep Learning the Chemistry of Materials From Only Elemental
Composition,” Nature Scientific Reports, vol. 8, no. 17593, 2018.

ElemNet:	Learning	Chemistry
From	Only	Element	Composition	



Dataset Size
Training 

from Scratch
Transfer 
Learning

MAE (eV/atom) MAE (eV/atom)

OQMD 341,000 0.0437 -

JARVIS 11,050 0.0568 0.0312

Materials Project 23,641 0.0327 0.0247

Experimental 1,963 0.1460 0.0608

Challenge
• Most materials datasets are 

small
• DFT vs experiment: Formation 

enthalpy MAE = ~0.08 
eV/atom

Methodology
• Deep transfer learning 
• Refine weights of a model 

pretrained on Simulation data
Datasets
• Source: OQMD
• Target: JARVIS, MP, 

Experimental
Results
• TL model > Training from 

scratch
• Up to 58% reduction in MAE on 

small (<2K) experimental data
• MAEFE = ~0.06 eV/atom Jha et al., Nature Communications, 2019

Deep	Transfer	Learning	for	(Small)	Experimental	Datasets



Example: Industrial 
Materials Design 



A complex and expensive 
work-flow

ØPrediction of properties of samples under certain processing conditions

1 2 3 4
5

6

Image2
(SEM)

Models 1- 6



Property 1 Hcj

Property 2 Hcj

Ø Two image modes: COMPO, SEI
Ø Two targets: powder, as bulk or 

forge
Ø eight positions: C00, C10, C20, 

C23, L00, L10, L20, L23
Ø magnifications: x200, x1000 and 

x30000

Property 1 Br

Property 2 Br

Image data

Property 
Prediction –
numerical 
data



Deep (transfer) learning* 
Pre-trained VGG16 

(truncated 
network)

Extract semantic 
image vectors 
from VGG16

Train a gradient 
boosting 
regressor

cross 
validation

Preprocessing 

PCA

Pre-trained 
VGG16 (truncated 

network)

Extract semantic 
image vectors 
from VGG16

Concatenate 
together

Train a gradient 
boosting 
regressor

cross validation

Preprocessing 

PCA

Combined Model
* What DL enables - Not enough Experimental data to learn



Impact!
• Tackle Complex Workflow
• Many teams - Each needs expertise, resources and access
• Involves Experiments, simulations, Instruments and ML
• Cost savings, Faster Exploration
• E.g., 2 out of 8 image orientations have predictive value => significant reduction in (1) 

instruments (2) time, (3) sample materials
• Fewer and relevant experiments - avoid back-end processing steps for not-so-

promising candidates
• Millions of $$$

• Discovery and Design acceleration
• Explore and Discover most promising and high performing materials faster



Illustrative	Publications	- AI	in	Materials
• Forward PSPP models (property prediction)

o Steels [IMMI 2014, CIKM 2016, IJF 2018, DSAA 2019]
o Crystalline stability [PRB 2014, npjCM 2016, ICDM 2016, DL-KDD 

2016, PRB 2017, SciRep 2018, KDD 2019, NatureComm 2019]
o Band gap and glass forming ability prediction [npjCM 2016]
o Bulk modulus prediction [RSC Adv 2016]
o Seebeck coefficient prediction [JCompChem 2018]
o Multi-scale localization/homogenization [IMMI 2015, IMMI 2017, 

CMS 2018, ActaMat 2019, IJCNN 2019]
o Chemical properties prediction [NIPS MLMM 2018, IJCNN 2019, 

Molecular Informatics 2019]
• Inverse PSPP models (optimization/discovery)

o Stable compounds [PRB 2014]
o Magnetostrictive materials [Nature Scientific Reports 2015, AIAA 

2018]
o Semiconductors and metallic glasses [npjCM 2016] 
o Microstructure design (GAN) [JMD 2018]
o Titanium aircraft panels [CMS 2019]

• Structure characterization
o EBSD Indexing [BigData-ASH 2016, M&M 2018] 
o Crack detection in macroscale images [CBM 2017, IJTTE 2018]
o XRD analysis for phase detection [IJCNN 2019]
o Plastic deformation identification [IJCNN 2019]

http://cucis.ece.northwestern.edu/publications/

http://cucis.ece.northwestern.edu/publications/


Understanding Climate 
Change



Limitation of Model Based Approaches

“The sad truth of climate science is that the most 
crucial information is the least reliable”  
(Nature, 2010)

• Physics based models are essential but Limited
• Relatively reliable predictions at global scale for ancillary 

variables such as temperature
• Least reliable predictions for variables that are crucial for 

impact assessment such as regional precipitation

Regional hydrology exhibits large variations 
among major IPCC model projections 

Disagreement between IPCC models

32

Low uncertainty High uncertainty

Temperature Hurricanes

Pressure Extremes

Large-scale wind Precipitation



AI + HPC + 
Observation in 
Climate Science

• Transformation from Data-Poor to 
Data-Rich :  Make use of wealth of 
observational and simulation data
• Accelerate Climate Models 
(PDE/ML)
• Integrate Sensor Observations with 
Climate models 
(cloud/precipitation, land 
cover/biogeochem, sea 
ice/calibration)
• AI/ML  - Automated Model 
Extraction

© Alok Choudhary 33



AI/ML Driven Approach Illustration – Predicting Extreme Events

Anomaly time series

Correlation between anomaly 
time series/AR Stat. significant 

correlations

Edge weights: significant correlations 

Climate Network

Nodes in the graph: grid points on the globe

Climate Data

SLP
SST

VWS

Multivariate Networks

Extreme 
Phase

Normal
Phase

Multiphase Networks
34(A)

Simulation + Observation



Micro, Real-time Forecast – Observation + AI/ML + Simulation 

Observe, Learn and Improve

HPC+AI/ML

High-resolution simulation

High-resolution observation

Predict and Act

Courtsey: RIKEN (JAPAN) - collaboration



Cosmology*

• Cosmic Frontier – AI in end-to-end application:

• Precision Cosmic Microwave Background emulation – AI 
simulation speed-up of a factor of 1000

• Search for strong lensing of galactic sources for precision 
cosmology measurements using AI classification, 
regression, and GANs for image generations

* [Argonne-led SciDAC-4 project:  “Inference and Machine 
Learning at Extreme Scales”]
1) GANs for image emulation, 2) GP and DL-based 
emulators for summary statistics, 3) CNN-based image 
classification, 4) AI-based photometric reshift estimation, 5) 
Likelihood-free methods for inference



A Good Reference for Many Applications and CS 

• DOE Organized - Over 1,000 scientists participated in 
town halls during the summer/fall of 2019

• Research Opportunities in AI 

• Biology, Chemistry, Materials,

• Climate, Physics, Energy, Cosmology

• Mathematics and Foundations

• Data Life Cycle

• Software Infrastructure

• Hardware for AI

• Integration with Scientific Facilities

• https://www.anl.gov/ai-for-science-report

https://www.anl.gov/ai-for-science-report


Geoffrey Fox, Shantenu Jha. “Learning Everywhere: A Taxonomy for the Integration of Machine Learning and 
Simulations” https://arxiv.org/abs/1909.13340

https://arxiv.org/search/cs?searchtype=author&query=Fox%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Jha%2C+S
https://arxiv.org/abs/1909.13340


Next Set of Doors?

• Simulation in ML methods

• Surrogate AI functions

•Generative models to compare with simulation

• Learned functions

• Learned theory from data

•Guided search through parameter spaces

•Automated (no human in loop) complex 
workflow across paradigms of discovery

•… 1000X speed up



AI for Science

Dr. Alok Choudhary
Henry and Isabel Dever Professor

EECS and Kellogg School of Management
Northwestern University

choudhar@eecs.northwestern.edu

Founder, Chairman and Chief Scientist 
4Cinsights Inc: A Big Data Science Company

(recently acquired by Mediaocean)
+1 312 515 2562 
www.4cinsights.com

THANK YOU!

http://cucis.ece.northwestern.edu/publications/

Lots of TOOLS at http://info.eecs.northwestern.edu
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