The price performance of performance models

Felix Wolf, Technical University of Darmstadt IEEE Cluster Conference 2020, Kobe, Japan

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 1

Photo: Alex Becker / TU Darmstadt

Acknowledgement

TU Darmstadt

- Yannick Berens
- Alexandru Calotoiu
- Alexander Geiß
- Alexander Graf
- Daniel Lorenz
- Benedikt Naumann
- Thorsten Reimann
- Sebastian Rinke
- Marcus Ritter
- Sergei Shudler

ETH Zurich

- Alexandru Calotoiu
- Marcin Copik
- Tobias Grosser
- Torsten Hoefler
- Nicolas Wicki

FZ Jülich

Alexandre Strube

DFG FNSNF

LLNL

- David Beckingsale
- Christopher Earl
- Ian Karlin
- Martin Schulz

Bundesministerium für Bildung und Forschung

Performance model

Formula that expresses relevant performance metric as a function of one or more execution parameters

Empirical performance modeling

Challenges

Run-to-run variation / noise

Cost of the required experiments

How to deal with noisy data

- Introduce prior into learning process
 - Assumption about the probability distribution generating the data

Performance model normal form (PMNF)

New BSD license

http://www.scalasca.org/software/extra-p/download.html

MPI implementations [Shudler et al., IEEE TPDS 2019]

Platform	Juqueen	Juropa	Piz Daint		
Allreduce [s]		Expecta	tion: <i>O</i> (log <i>p</i>)		
Model	O (log <i>p</i>)	O (p ^{0.5})	$O(p^{0.67} \log p)$		
R ²	0.87	0.99	0.99		
Match	\checkmark	~	X!		
Comm_dup [E	3]	Expectation: O (1)			
Model	2.2e5	256	3770 + 18 <i>p</i>		
R ²	1	1	0.99		
Match	\checkmark	\checkmark	X		

Kripke - example w/ multiple parameters

Lightweight requirements engineering for (exascale) co-design

Resource	Metric (per process)			
Memory footprint	# Bytes used (resident memory size)			
Computation	# Floating-point operations (#FLOP)			
Network communication	# Bytes sent / received			
Memory access	# Loads / stores; stack distance			

Counters often more noise resilient than time

Application demands for different resources scale differently

#Bytes used #FLOP #Bytes sent & received #Loads & stores Stack distance $10^{5} \cdot n \log n$ $10^{5} \cdot n \log n \cdot p^{0.25} \log p$ $10^{3} \cdot n \cdot p^{0.25} \log p$ $10^{5} \cdot n \log n \cdot \log p$ Constant

Models are per process p – Number of processes n – Problem size per process

Calculate relative changes of resource demand by scaling p and n

- n is a function of the memory size
- p is a function of the number of cores / sockets

Co-design

[Calotoiu et al., Cluster'18]

Apps Ratios	Kripke	LULESH	MILC	Relearn	icoFoam	Baseline
System Upgrade A: Double t	he rack	S				
Problem size per process	1	1	1	1	0.5	1
Overall problem size	2	2	2	2	1	2
Computation	1	1.2	1	1	0.5	1
Communication	1	1.2	1	1	0.7	1
Memory accesses	2	1.2	2.8	2	0.7	1
System Upgrade B: Double the sockets						
Problem size per process	0.5	0.5	0.5	0.3	0.3	0.5
Overall problem size	1	1	1	0.5	0.6	1
Computation	0.5	0.6	0.5	0.3	0.2	0.5
Communication	0.5	0.6	0.5	0.3	0.3	0.5
Memory accesses	0.5		1.4	1	0.5	0.5
System Upgrade C: Double the menory						
Problem size per process	2	1.4	2	4	1.4	2
Overall problem size	2	1.4	2	4	1.4	2
Computation	2	1.4	2	4	1.7	2
Communication	2	1.4	2	4	1.4	2
Memory accesses	2	1.4	2	4	1.4	2

Three upgrades – summary

Best option

LULESH

Worst option

Task-graph modeling

[Shudler et al., PPoPP'17]

- Nodes tasks, edges dependencies
- p,n processing elements, input size
- $|T_1(n)|$ all the task times (*work*)
- $T_{\infty}(n)$ longest path (*depth*)
- $\pi(n) = \frac{T_1(n)}{T_n(n)}$ average parallelism

Experiments can be expensive

Need $5^{(m+1)}$ experiments, m = # parameters

Multi-parameter modeling in Extra-P

How many data points do we really need?

TECHNISCHE

UNIVERSITÄT DARMSTADT

Learning cost-effective sampling strategies [Ritter et al., IPDPS'20]

TECHNISCHE UNIVERSITÄT

DARMSTADT

Heuristic parameter-value selection strategy

Synthetic data evaluation

TECHNISCHE UNIVERSITÄT DARMSTADT

3 parameters, 5% noise

TECHNISCHE UNIVERSITÄT DARMSTADT

4 parameters, 5% noise

4 parameters, 1% noise

Case studies

Applicatio	n	#Parameters	Extra points	Cost savings [%]	Prediction error [%]
FASTEST		2	0	70	2
Kripke		3	3	99	39
Relearn		2	0	85	11

Parameter selection

- The more paramters the more experiments
- Modeling parameters without performance impact is harmful

PerfTaint – Taint-based performance modeling

PerfTaint - White-box performance modeling

	Black box (before)	White box (now)
Parameter identification	Manual	Taint coverage
Experiment design	Vary all parameters blindly	Exploit knowledge of parameter influence and dependencies
Instrumentation	All functions	Only functions with parameter influence
Model generation	All functions	Only functions with parameter influence

Case study – LULESH & MILC Influence of program parameters

TECHNISCHE UNIVERSITÄT DARMSTADT

LULESH	Total	р	size	regions	iters	balance		cost	p, size
Functions	349	2	40	15	1	1		2	40
Loops	275	2	78	29	1	1		2	78
MILC	Total	р	size	trajecs	warms steps	nrest. niter	mass, beta nfl.	u0	p, size
Functions	621	54	53	12	9	6	1	4	56
Loops	874	187	161	39	31	15	1	7	196

DNNs often better at guessing models in the presence of noise

Gaussian processes

Goal: better tradeoff between accuracy and cost for specific models

Source: https://scikit-learn.org/stable/_images/sphx_glr_plot_gpr_noisy_targets_001.png Buitinc et al.: API design for machine learning software: experiences from the scikit-learn project, 2013.

New version of Extra-P in Q4 2020

- Includes the new sparse modeler
- Available as a Python package
- No interfaces or external dependencies
- Support for Windows and Linux (Ubuntu)
- Easy installation via pip
- BSD 3-Clause License

Selected papers

Торіс	Bibliography
Foundation (single model paramter)	Alexandru Calotoiu, Torsten Hoefler, Marius Poke, Felix Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes. SC13 .
MPI case study	Sergei Shudler, Yannick Berens, Alexandru Calotoiu, Torsten Hoefler, Alexandre Strube, Felix Wolf: Engineering Algorithms for Scalability through Continuous Validation of Performance Expectations. IEEE TPDS , 30(8):1768–1785, 2019.
Multiple model parameters	Alexandru Calotoiu, David Beckingsale, Christopher W. Earl, Torsten Hoefler, Ian Karlin, Martin Schulz, Felix Wolf: Fast Multi-Parameter Performance Modeling. IEEE Cluster 2016.
Co-design	Alexandru Calotoiu, Alexander Graf, Torsten Hoefler, Daniel Lorenz, Sebastian Rinke, Felix Wolf: Lightweight Requirements Engineering for Exascale Co-design. IEEE Cluster 2018 .
Task-graph modeling	Sergei Shudler, Alexandru Calotoiu, Torsten Hoefler, Felix Wolf: Isoefficiency in Practice: Configuring and Understanding the Performance of Task-based Applications. PPoPP 2017 .
Learning cost- effective sampling strategies	Marcus Ritter, Alexandru Calotoiu, Sebastian Rinke, Thorsten Reimann, Torsten Hoefler, Felix Wolf: Learning Cost-Effective Sampling Strategies for Empirical Performance Modeling. IPDPS 2020 .
Taint-based performance modeling	Marcin Copik, Alexandru Calotoiu, Tobias Grosser, Nicolas Wicki, Felix Wolf, Torsten Hoefler: Extracting Clean Performance Models from Tainted Programs. Submitted .

Thank you!

