
9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 1

Felix Wolf, Technical University of Darmstadt
IEEE Cluster Conference 2020, Kobe, Japan

The price performance
of performance models

Application System

Photo: Alex Becker / TU Darmstadt

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 2

Acknowledgement

TU Darmstadt
• Yannick Berens

• Alexandru Calotoiu

• Alexander Geiß

• Alexander Graf

• Daniel Lorenz

• Benedikt Naumann

• Thorsten Reimann

• Sebastian Rinke

• Marcus Ritter

• Sergei Shudler

ETH Zurich
• Alexandru Calotoiu

• Marcin Copik

• Tobias Grosser

• Torsten Hoefler

• Nicolas Wicki

LLNL
• David Beckingsale

• Christopher Earl

• Ian Karlin

• Martin Schulz

FZ Jülich
• Alexandre Strube

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 3

Scaling your code can harbor
performance surprises*…

Communication
Com

pu
tat

ion
Communication

Com
pu

tat
ion

*Goldsmith et al., 2007

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 4

Performance model

29 210 211 212 213
0

3

6

9

12

15

18

21

3
¨ 10

´4 p
2 ` c

Processes

T
im

e
rs

s

Formula that expresses relevant performance metric as a
function of one or more execution parameters

Identify
kernels

• Incomplete
coverage

Create
models

• Laborious,
difficult

Analytical (i.e., manual) creation
challenging for entire programs

𝑡 = 𝑓(𝑝)𝑡 = 3 (10!"𝑝# + c

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 5

Empirical performance modeling

Performance measurements
with different execution
parameters x1,...,xn

t1 t2
t3

tn-2 tn-1
tn

…
.

Machine
learning 𝑡 = 𝑓(𝑥!, … , 𝑥")

Alternative metrics:
FLOPs, data volume…

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 6

Challenges

Applications

System

Run-to-run variation / noise

Cost of the required experiments

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 7

How to deal with noisy data

• Introduce prior into learning process
• Assumption about the probability distribution generating the data

• Computation
• Memory access
• Communication
• I/O~

Time Effort

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 8

Typical algorithmic complexities in HPC
C
om
pu
ta
tio
n

C
om
m
unication

Samplesort
t(p) ~ p2

Naïve N-body
t(p) ~ p

FFT
t(p) ~ c

LU
t(p) ~ c

Samplesort
t(p) ~ p2 log2

2 (p)

Naïve N-body
t(p) ~ p

FFT
t(p) ~ log2(p)

LU
t(p) ~ c

… …

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 9

Performance model normal form (PMNF)

𝑓 𝑥 =)
#$!

"

𝑐# + 𝑝%! + 𝑙𝑜𝑔&
'!(𝑥)

Single parameter
[Calotoiu et al., SC13]

𝑓 𝑥!, … , 𝑥(=)
#$!

"

𝑐#0
)$!

(

𝑥)
%!" + 𝑙𝑜𝑔&

'!"(𝑥))

Multiple parameters [Calotoiu et al., Cluster’16]

Heuristics to
reduce

search space

Parameter
selection

Search
space

configuration

Linear
regression +

cross-
validation

Quality
assurance

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 10

Extra-P 3.0

New BSD license
http://www.scalasca.org/software/extra-p/download.html

http://www.scalasca.org/software/extra-p/download.html

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 11

MPI implementations
[Shudler et al., IEEE TPDS 2019]

Platform Juqueen Juropa Piz Daint
Allreduce [s] Expectation: O (log p)
Model O (log p) O (p0.5) O (p0.67 log p)
R2 0.87 0.99 0.99
Match ✔ ~ ✘!
Comm_dup [B] Expectation: O (1)
Model 2.2e5 256 3770 + 18p
R2 1 1 0.99
Match ✔ ✔ ✘

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 12

Kripke - example w/ multiple parameters

SweepSolver

Main computation kernel

Expectation – Performance depends on
problem size

Actual model:

MPI_Testany

Main communication
kernel: 3D wave-front
communication pattern

Expectation – Performance depends on
cubic root of process count

Actual model:

t ~ p3t ~ d ⋅ g Kernels must wait on
each other

*Coefficients have been rounded for convenience

t = 5+ d ⋅ g+ 0.005 ⋅ p3 ⋅d ⋅ g t = 7+ p3 + 0.005 ⋅ p3 ⋅d ⋅ g

Smaller compounded effect discovered

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 13

Lightweight requirements engineering
for (exascale) co-design

Collect
portable

requirement
metrics

Derive
requirement

models

Extrapolate
to new
system

Resource Metric (per process)
Memory footprint # Bytes used (resident memory size)
Computation # Floating-point operations (#FLOP)
Network communication # Bytes sent / received
Memory access # Loads / stores; stack distance

Counters often more noise resilient than time

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 14

Application demands for different resources
scale differently

Calculate relative changes of resource demand by scaling p and n

• n is a function of the memory size

• p is a function of the number of cores / sockets

Lulesh

Models are per process
p – Number of processes
n – Problem size per process

TABLE II: Per-process requirements models. p denotes the number
of processes and n = N/p the problem size per process obtained by
dividing the overall problem size N by the number of processes p,
under the assumption that the overall problem size can be divided
equally among all processes. For each metric, we show the terms
with the largest impact on performance for both problem size per
process and number of processes. The coefficient is the sum across
the entire program, rounded to the nearest power of ten. We mark
potential performance bottlenecks with a warning sign.

Metric Model
K

r
ip

k
e

#Bytes used 105 · n
#FLOP 107 · n
#Bytes sent & received 104 · n
#Loads & stores 108 · n+ 105 · n · p B
Stack distance Constant

L
U

L
E

S
H

#Bytes used 105 · n log n
#FLOP 105 · n log n · p0.25 log p B

#Bytes sent & received 103 · n · p0.25 log p B

#Loads & stores 105 · n log n · log p
Stack distance Constant

M
I
L

C

#Bytes used 106 · n
#FLOP 1010 · n+ 107 · n log p
#Bytes sent & received 104 ·Allreduce(p)

104 ·Bcast(p)
109 · n

#Loads & stores 1011+108 ·n log n+105 ·p1.5
Stack distance 105 · n

R
e
le

a
r
n

#Bytes used 106 ·
p
n

#FLOP 103 · n log n · log p+ p
#Bytes sent & received 105 ·Allreduce(p)

10 ·Alltoall(p)
10 · n

#Loads & stores 106 · n log n+ 105 · p log p
Stack distance Constant

ic
o

F
o

a
m

#Bytes used 103 · n+ 102 · p log p B

#FLOP 108 · n1.5 · p0.5 B

#Bytes sent & received n0.5 ·Allreduce(p) B

p0.5 log p B

n · p0.375 B

#Loads & stores 108 · n log n · p0.5 log p B
Stack distance Constant

does not support the processor of JUQUEEN, we measured
stack distance for all applications on Lichtenberg. Already
this showcases one advantage of our approach. Because the
metrics we collect are architecture independent, we can easily
overcome the deficiencies of the measurement infrastructure
on one system by choosing another.

In our experiments, we varied the number of MPI processes
and the problem size per process. Some of the metrics we
analyze can be gathered at different levels of granularity. A
fine granularity is useful to pinpoint performance bottlenecks
in applications. For the current analysis however, we are
interested in the performance of the application as a whole
and we therefore wish to summarize the models obtained. The
memory footprint, the number of floating-point operations, and
the number of loads and stores are gathered by examining the

5 20 40 60 80 100
0

100

200

300

Relative error [%]

N
um

be
r

of
m

ea
su

re
m

en
ts

Fig. 3: Measurements classified by percentile relative error
over all generated models.

entire application monolithically. Requirements for communi-
cation and memory locality are obtained at the granularity of
function calls and instruction groups, respectively. For each
application, we selected all models with the fastest growing
requirements for each of the two model parameters p and n,
added all coefficients for these models, and rounded them to
the nearest power of ten. We generated models considering
polynomial and logarithmic exponents. The polynomial expo-
nents take values between 0 and 3, including all fractions of
the types i

8 and i
3 . For logarithms, we used the exponents

{0; 0.5; 1; 1.5; 2}.
The resulting requirements models of our five applications

are presented in Table II. To assess the model quality, the
histogram shown in Figure 3 classifies each measurement that
was used to generate a model according to the relative error
of the generated model. The overwhelming majority (88%)
of measurements points are well explained by our models
and have relative errors smaller than 5%, and most of the
remaining ones (8%) still have relative errors smaller than
20%. We therefore claim that the models we generate are more
than adequate to serve as a basis for the co-design process.
Below, we briefly discuss the requirements of each application
individually.

Kripke is a 3D Sn particle transport code and implements an
asynchronous MPI-based parallel sweep algorithm. A major
goal of Kripke is the evaluation of programming models,
data layouts, and sweep algorithms in terms of their perfor-
mance impact. The problem size per process is defined as the
simulated volume per process. As expected from a exascale
proxy app, Kripke should scale reasonably well to any number
of processes and the problem size per process will remain
configurable without incurring significant performance losses.
Only the number of loads and stores shows a multiplicative
effect of problem size and process count and might lead to a
slowdown.

LULESH is also a a widely studied proxy application in
DOE co-design efforts for exascale which calculates simplified

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 15

Co-design

Examples

• Double the racks

• Double the sockets

• Double the memory

Given a budget and a set of
applications, how can we
best invest in upgrades for a
given hardware system?

[Calotoiu et al., Cluster’18]

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 16

K
rip

ke

LU
LE

SH

M
IL

C

R
el

ea
rn

ic
oF

oa
m

B
as

el
in

e

System Upgrade A: Double the racks

Problem size per process 1 1 1 1 0.5 1

Overall problem size 2 2 2 2 1 2
Computation 1 1.2 1 1 0.5 1
Communication 1 1.2 1 1 0.7 1
Memory accesses 2 1.2 2.8 2 0.7 1
System Upgrade B: Double the sockets

Problem size per process 0.5 0.5 0.5 0.3 0.3 0.5

Overall problem size 1 1 1 0.5 0.6 1
Computation 0.5 0.6 0.5 0.3 0.2 0.5
Communication 0.5 0.6 0.5 0.3 0.3 0.5
Memory accesses 0.5 1 1.4 1 0.5 0.5
System Upgrade C: Double the memory

Problem size per process 2 1.4 2 4 1.4 2

Overall problem size 2 1.4 2 4 1.4 2
Computation 2 1.4 2 4 1.7 2
Communication 2 1.4 2 4 1.4 2
Memory accesses 2 1.4 2 4 1.4 2

Three upgrades –
summary

Apps

Ratios

LULESH

Best option

Worst option

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 17

Task-graph modeling
[Shudler et al., PPoPP’17]

§ Nodes – tasks, edges – dependencies

§ – processing elements, input size

§ – all the task times (work)

§ – longest path (depth)

§ – average parallelism 10

p,n

T1(n)

T∞(n)

T1 = 45
T∞ = 25

6

17 3

475

2

π (n) = T1(n)
T∞(n)

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 18

Experiments can be expensive
Need 𝟓(𝒎#𝟏) experiments, 𝒎 = #parameters

Pr
ob

le
m

 s
iz

e
pe

r p
ro

ce
ss

Processes

Low memory High jitter

50

20

40

30

10

4 8 16 32 64

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 19

Multi-parameter modeling in Extra-P

Generation of candidate models
and selection of best fit

c1 + c2 ⋅ p

c1 + c2 ⋅ p
2

c1 + c2 ⋅ log(p)
c1 + c2 ⋅ p ⋅ log(p)

c1 + c2 ⋅ p
2 ⋅ log(p)

c1 ⋅ log(p)+ c2 ⋅ p
c1 ⋅ log(p)+ c2 ⋅ p ⋅ log(p)
c1 ⋅ log(p)+ c2 ⋅ p

2

c1 ⋅ log(p)+ c2 ⋅ p
2 ⋅ log(p)

c1 ⋅ p+ c2 ⋅ p ⋅ log(p)
c1 ⋅ p+ c2 ⋅ p

2

c1 ⋅ p+ c2 ⋅ p
2 ⋅ log(p)

c1 ⋅ p ⋅ log(p)+ c2 ⋅ p
2

c1 ⋅ p ⋅ log(p)+ c2 ⋅ p
2 ⋅ log(p)

c1 ⋅ p
2 + c2 ⋅ p

2 ⋅ log(p)

Find best single-
parameter model

Combine them in the
most plausible way

(+, *, none)

Time = 𝑐&) 𝑛) log(𝑛)) 𝑝

𝐹𝐿𝑂𝑃𝑠 = 𝑐') 𝑛) log(𝑛)

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 20

How many data points do we really need?
Pr

ob
le

m
 s

iz
e

pe
r p

ro
ce

ss
 𝒔

Processes 𝒑

50

20

40

30

10

4 8 16 32 64

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 21

Learning cost-effective sampling strategies
[Ritter et al., IPDPS’20]

Function generator

Noise module

Reinforcement learning
agent

Selected
parameter
values

Synthetic
measurement

Extra-P

Evaluation

Feedback

Prediction

Ground truth

Empirical model

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 22

Heuristic parameter-value selection strategy

Measure min.
amount points

required for modeling

Create a model using
Extra-P

Gather on additional
measurement

(assumed to be
cheapest)

Create new model

Final model

If cost
<

budget

yes

no

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 23

Synthetic data evaluation

5%
10%

15%
20%

-5%
-10%

-15%
-20%

Training Evaluation

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 24

Synthetic evaluation results

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f a
cc

ur
at

e
m

od
el

s*

1 parameter, 5% noise 2 parameters, 5% noise

Measurements used / Percentage of cost
5 / 100% 9 / 12% 11 / 13% 15 / 17% 25 / 100%

Repetitions
2 4 6

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 25

Synthetic evaluation results

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f a
cc

ur
at

e
m

od
el

s*

Measurements used / Percentage of cost
13 / 1.7% 15 / 1.8% 25 / 2.2% 75 / 11% 125 / 100%

Repetitions
2 4 6

3 parameters, 5% noise

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 26

Synthetic evaluation results

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f a
cc

ur
at

e
m

od
el

s*

4 parameters, 5% noise

Measurements used / Percentage of cost

17 / 0.1% 18 / 0.12% 125 / 1.2% 250 / 4.2% 625 / 100%

Repetitions
2 4 6

25 / 0.17%

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 27

Synthetic evaluation results

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f a
cc

ur
at

e
m

od
el

s*

4 parameters, 1% noise

Measurements used / Percentage of cost

17 / 0.1% 18 / 0.12% 125 / 1.2% 250 / 4.2% 625 / 100%

Repetitions
2 4 6

25 / 0.17%

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 28

Case studies

Application #Parameters Extra
points

Cost savings
[%]

Prediction
error [%]

FASTEST 2 0 70 2

Kripke 3 3 99 39

Relearn 2 0 85 11

0

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 29

Parameter selection

• The more paramters the more experiments

• Modeling parameters without performance impact is harmful

Taint
analysis

Program

Input parameters Which
parameter
influences

which
function?

Taint labels

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 30

PerfTaint – Taint-based performance
modeling

Annotate parameters

register_variable(“size”, &size);

Static
loop

analysis

Dynamic
taint

analysis

DataFlowSanitizer
+ control-flow taint propagation

• Parameter effects &
dependencies

• Constant functions
[Copik et al., submitted,
Code: spcl/perf-taint@ GitHub]

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 31

PerfTaint - White-box performance modeling

Black box (before) White box (now)
Parameter
identification

Manual Taint coverage

Experiment
design

Vary all parameters blindly Exploit knowledge of
parameter influence and
dependencies

Instrumentation All functions Only functions with
parameter influence

Model generation All functions Only functions with
parameter influence

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 32

Case study – LULESH & MILC
Influence of program parameters

LULESH Total p size regions iters balance cost p,
size

Functions 349 2 40 15 1 1 2 40

Loops 275 2 78 29 1 1 2 78

MILC Total p size trajecs warms
steps

nrest.
niter

mass,
beta
nfl.

u0 p,
size

Functions 621 54 53 12 9 6 1 4 56

Loops 874 187 161 39 31 15 1 7 196

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 33

PerfTaint –
Taint-based performance modeling

Overhead • 50% less overhead
(rel. to Score-P default filter)

Quality

Validity

• Constant functions
• Perturbation

Hardware contention
P1 P2 P3 P4

Memory

Segmented behavior
int foo(int a) {
if (a < 4)

kernel_linear(a);
else

kernel_log(a);
}

3×10!"𝑝#.% + 10!%𝑠"2.4×10!&𝑝#.'%𝑠"

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 34

Noise-resilient adaptive modeling

DNNs often better at guessing models in the presence of noise

Performance
measurements Estimate noise

Noise
low?

Final
model

Classic
(sparse)
modeler

Select best

DNN
modeler

Performance
model

yes

no

Performance
model

Transfer Learning

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 35

Noise-resilient adaptive modeling
Synthetic evaluation

0%

5%

10%

15%

20%

25%

30%

20% 50% 100%
Noise level

Relative error

Adaptive Sparse

0%

20%

40%

60%

80%

20% 50% 100%
Noise level

Lead exponents within
1/3 of ground truth

Adaptive Sparse

2 parameters

(at unseen point, two ticks in each dimension)

0

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 36

Gaussian processes

Goal: better tradeoff between accuracy and cost for specific models

f(x)

x

50

20

40

30

10

4 8 16 32 64
Processes

Pr
ob

le
m

 s
iz

e
pe

r p
ro

ce
ss

Source: https://scikit-learn.org/stable/_images/sphx_glr_plot_gpr_noisy_targets_001.png
Buitinc et al.: API design for machine learning software: experiences from the scikit-learn project, 2013.

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 37

New version of Extra-P in Q4 2020

• Includes the new sparse modeler

• Available as a Python package

• No interfaces or external dependencies

• Support for Windows and Linux (Ubuntu)

• Easy installation via pip

• BSD 3-Clause License

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 38

Selected papers

Topic Bibliography
Foundation (single
model paramter)

Alexandru Calotoiu, Torsten Hoefler, Marius Poke, Felix Wolf: Using Automated
Performance Modeling to Find Scalability Bugs in Complex Codes. SC13.

MPI case study Sergei Shudler, Yannick Berens, Alexandru Calotoiu, Torsten Hoefler, Alexandre
Strube, Felix Wolf: Engineering Algorithms for Scalability through Continuous
Validation of Performance Expectations. IEEE TPDS, 30(8):1768–1785, 2019.

Multiple model
parameters

Alexandru Calotoiu, David Beckingsale, Christopher W. Earl, Torsten Hoefler, Ian
Karlin, Martin Schulz, Felix Wolf: Fast Multi-Parameter Performance Modeling. IEEE
Cluster 2016.

Co-design Alexandru Calotoiu, Alexander Graf, Torsten Hoefler, Daniel Lorenz, Sebastian Rinke,
Felix Wolf: Lightweight Requirements Engineering for Exascale Co-design. IEEE
Cluster 2018.

Task-graph
modeling

Sergei Shudler, Alexandru Calotoiu, Torsten Hoefler, Felix Wolf: Isoefficiency in
Practice: Configuring and Understanding the Performance of Task-based
Applications. PPoPP 2017.

Learning cost-
effective sampling
strategies

Marcus Ritter, Alexandru Calotoiu, Sebastian Rinke, Thorsten Reimann, Torsten
Hoefler, Felix Wolf: Learning Cost-Effective Sampling Strategies for Empirical
Performance Modeling. IPDPS 2020.

Taint-based
performance
modeling

Marcin Copik, Alexandru Calotoiu, Tobias Grosser, Nicolas Wicki, Felix Wolf, Torsten
Hoefler: Extracting Clean Performance Models from Tainted Programs. Submitted.

9/16/20 | Technical University of Darmstadt, Germany | Felix Wolf | 39

Thank you!

