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Scaling your code can harbor 
performance surprises*…

Communication
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pu

tat
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*Goldsmith et al., 2007
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Performance model
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Formula that expresses relevant performance metric as a 
function of one or more execution parameters

Identify 
kernels

• Incomplete 
coverage

Create 
models

• Laborious, 
difficult

Analytical (i.e., manual) creation 
challenging for entire programs

𝑡 = 𝑓(𝑝)𝑡 = 3 ( 10!"𝑝# + c
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Empirical performance modeling

Performance measurements 
with different execution 
parameters x1,...,xn

t1 t2
t3

tn-2 tn-1
tn

…
.

Machine 
learning 𝑡 = 𝑓(𝑥!, … , 𝑥")

Alternative metrics: 
FLOPs, data volume… 
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Challenges 

Applications

System

Run-to-run variation / noise

Cost of the required experiments
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How to deal with noisy data

• Introduce prior into learning process
• Assumption about the probability distribution generating the data

• Computation
• Memory access
• Communication
• I/O~

Time Effort
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Typical algorithmic complexities in HPC
C
om
pu
ta
tio
n

C
om
m
unication

Samplesort
t(p) ~ p2

Naïve N-body
t(p) ~ p

FFT
t(p) ~ c

LU
t(p) ~ c

Samplesort
t(p) ~ p2 log2

2 (p)

Naïve N-body
t(p) ~ p

FFT
t(p) ~ log2(p)

LU
t(p) ~ c

… …
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Performance model normal form (PMNF)

𝑓 𝑥 = )
#$!

"

𝑐# + 𝑝%! + 𝑙𝑜𝑔&
'!(𝑥)

Single parameter 
[Calotoiu et al., SC13]

𝑓 𝑥!, … , 𝑥( = )
#$!

"

𝑐#0
)$!

(

𝑥)
%!" + 𝑙𝑜𝑔&

'!"(𝑥))

Multiple parameters [Calotoiu et al., Cluster’16]

Heuristics to 
reduce 

search space

Parameter 
selection

Search 
space 

configuration

Linear 
regression + 

cross-
validation

Quality 
assurance
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Extra-P 3.0

New BSD license
http://www.scalasca.org/software/extra-p/download.html

http://www.scalasca.org/software/extra-p/download.html
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MPI implementations
[Shudler et al., IEEE TPDS 2019]

Platform Juqueen Juropa Piz Daint
Allreduce [s] Expectation: O (log p)
Model O (log p) O (p0.5) O (p0.67 log p)
R2 0.87 0.99 0.99
Match ✔ ~ ✘!
Comm_dup [B] Expectation: O (1)
Model 2.2e5 256 3770 + 18p
R2 1 1 0.99
Match ✔ ✔ ✘
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Kripke - example w/ multiple parameters

SweepSolver

Main computation kernel

Expectation – Performance depends on 
problem size

Actual model:

MPI_Testany

Main communication
kernel: 3D wave-front
communication pattern

Expectation – Performance depends on 
cubic root of process count

Actual model:

t ~ p3t ~ d ⋅ g Kernels must wait on 
each other

*Coefficients have been rounded for convenience

t = 5+ d ⋅ g+ 0.005 ⋅ p3 ⋅d ⋅ g t = 7+ p3 + 0.005 ⋅ p3 ⋅d ⋅ g

Smaller compounded effect discovered 
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Lightweight requirements engineering 
for (exascale) co-design

Collect 
portable 

requirement 
metrics

Derive 
requirement 

models 

Extrapolate 
to new 
system

Resource Metric (per process)
Memory footprint # Bytes used (resident memory size) 
Computation # Floating-point operations (#FLOP) 
Network communication # Bytes sent / received 
Memory access # Loads / stores; stack distance

Counters often more noise resilient than time
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Application demands for different resources 
scale differently 

Calculate relative changes of resource demand by scaling p and n

• n is a function of the memory size

• p is a function of the number of cores / sockets

Lulesh

Models are per process
p – Number of processes 
n – Problem size per process 

TABLE II: Per-process requirements models. p denotes the number
of processes and n = N/p the problem size per process obtained by
dividing the overall problem size N by the number of processes p,
under the assumption that the overall problem size can be divided
equally among all processes. For each metric, we show the terms
with the largest impact on performance for both problem size per
process and number of processes. The coefficient is the sum across
the entire program, rounded to the nearest power of ten. We mark
potential performance bottlenecks with a warning sign.

Metric Model
K

r
ip

k
e

#Bytes used 105 · n
#FLOP 107 · n
#Bytes sent & received 104 · n
#Loads & stores 108 · n+ 105 · n · p B
Stack distance Constant

L
U

L
E

S
H

#Bytes used 105 · n log n
#FLOP 105 · n log n · p0.25 log p B

#Bytes sent & received 103 · n · p0.25 log p B

#Loads & stores 105 · n log n · log p
Stack distance Constant

M
I
L

C

#Bytes used 106 · n
#FLOP 1010 · n+ 107 · n log p
#Bytes sent & received 104 ·Allreduce(p)

104 ·Bcast(p)
109 · n

#Loads & stores 1011+108 ·n log n+105 ·p1.5
Stack distance 105 · n

R
e
le

a
r
n

#Bytes used 106 ·
p
n

#FLOP 103 · n log n · log p+ p
#Bytes sent & received 105 ·Allreduce(p)

10 ·Alltoall(p)
10 · n

#Loads & stores 106 · n log n+ 105 · p log p
Stack distance Constant

ic
o

F
o

a
m

#Bytes used 103 · n+ 102 · p log p B

#FLOP 108 · n1.5 · p0.5 B

#Bytes sent & received n0.5 ·Allreduce(p) B

p0.5 log p B

n · p0.375 B

#Loads & stores 108 · n log n · p0.5 log p B
Stack distance Constant

does not support the processor of JUQUEEN, we measured
stack distance for all applications on Lichtenberg. Already
this showcases one advantage of our approach. Because the
metrics we collect are architecture independent, we can easily
overcome the deficiencies of the measurement infrastructure
on one system by choosing another.

In our experiments, we varied the number of MPI processes
and the problem size per process. Some of the metrics we
analyze can be gathered at different levels of granularity. A
fine granularity is useful to pinpoint performance bottlenecks
in applications. For the current analysis however, we are
interested in the performance of the application as a whole
and we therefore wish to summarize the models obtained. The
memory footprint, the number of floating-point operations, and
the number of loads and stores are gathered by examining the
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Fig. 3: Measurements classified by percentile relative error
over all generated models.

entire application monolithically. Requirements for communi-
cation and memory locality are obtained at the granularity of
function calls and instruction groups, respectively. For each
application, we selected all models with the fastest growing
requirements for each of the two model parameters p and n,
added all coefficients for these models, and rounded them to
the nearest power of ten. We generated models considering
polynomial and logarithmic exponents. The polynomial expo-
nents take values between 0 and 3, including all fractions of
the types i

8 and i
3 . For logarithms, we used the exponents

{0; 0.5; 1; 1.5; 2}.
The resulting requirements models of our five applications

are presented in Table II. To assess the model quality, the
histogram shown in Figure 3 classifies each measurement that
was used to generate a model according to the relative error
of the generated model. The overwhelming majority (88%)
of measurements points are well explained by our models
and have relative errors smaller than 5%, and most of the
remaining ones (8%) still have relative errors smaller than
20%. We therefore claim that the models we generate are more
than adequate to serve as a basis for the co-design process.
Below, we briefly discuss the requirements of each application
individually.

Kripke is a 3D Sn particle transport code and implements an
asynchronous MPI-based parallel sweep algorithm. A major
goal of Kripke is the evaluation of programming models,
data layouts, and sweep algorithms in terms of their perfor-
mance impact. The problem size per process is defined as the
simulated volume per process. As expected from a exascale
proxy app, Kripke should scale reasonably well to any number
of processes and the problem size per process will remain
configurable without incurring significant performance losses.
Only the number of loads and stores shows a multiplicative
effect of problem size and process count and might lead to a
slowdown.

LULESH is also a a widely studied proxy application in
DOE co-design efforts for exascale which calculates simplified
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Co-design

Examples

• Double the racks

• Double the sockets

• Double the memory

Given a budget and a set of 
applications, how can we 
best invest in upgrades for a 
given hardware system?

[Calotoiu et al., Cluster’18]
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System Upgrade A: Double the racks

Problem size per process 1 1 1 1 0.5 1

Overall problem size 2 2 2 2 1 2
Computation 1 1.2 1 1 0.5 1
Communication 1 1.2 1 1 0.7 1
Memory accesses 2 1.2 2.8 2 0.7 1
System Upgrade B: Double the sockets

Problem size per process 0.5 0.5 0.5 0.3 0.3 0.5

Overall problem size 1 1 1 0.5 0.6 1
Computation 0.5 0.6 0.5 0.3 0.2 0.5
Communication 0.5 0.6 0.5 0.3 0.3 0.5
Memory accesses 0.5 1 1.4 1 0.5 0.5
System Upgrade C: Double the memory

Problem size per process 2 1.4 2 4 1.4 2

Overall problem size 2 1.4 2 4 1.4 2
Computation 2 1.4 2 4 1.7 2
Communication 2 1.4 2 4 1.4 2
Memory accesses 2 1.4 2 4 1.4 2

Three upgrades –
summary

Apps

Ratios

LULESH

Best option 

Worst option 
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Task-graph modeling
[Shudler et al., PPoPP’17]

§ Nodes – tasks, edges – dependencies

§ – processing elements, input size

§ – all the task times (work)

§ – longest path (depth)

§ – average parallelism 10

p,n

T1(n)

T∞(n)

T1 = 45
T∞ = 25

6

17 3

475

2

π (n) = T1(n)
T∞(n)
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Experiments can be expensive
Need  𝟓(𝒎#𝟏) experiments, 𝒎 = #parameters
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Processes

Low memory High jitter
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40
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10

4 8 16 32 64
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Multi-parameter modeling in Extra-P

Generation of candidate models 
and selection of best fit

c1 + c2 ⋅ p

c1 + c2 ⋅ p
2

c1 + c2 ⋅ log(p)
c1 + c2 ⋅ p ⋅ log(p)

c1 + c2 ⋅ p
2 ⋅ log(p)

c1 ⋅ log(p)+ c2 ⋅ p
c1 ⋅ log(p)+ c2 ⋅ p ⋅ log(p)
c1 ⋅ log(p)+ c2 ⋅ p

2

c1 ⋅ log(p)+ c2 ⋅ p
2 ⋅ log(p)

c1 ⋅ p+ c2 ⋅ p ⋅ log(p)
c1 ⋅ p+ c2 ⋅ p

2

c1 ⋅ p+ c2 ⋅ p
2 ⋅ log(p)

c1 ⋅ p ⋅ log(p)+ c2 ⋅ p
2

c1 ⋅ p ⋅ log(p)+ c2 ⋅ p
2 ⋅ log(p)

c1 ⋅ p
2 + c2 ⋅ p

2 ⋅ log(p)

Find best single-
parameter model

Combine them in the 
most plausible way 

(+, *, none) 

Time = 𝑐& ) 𝑛 ) log(𝑛) ) 𝑝

𝐹𝐿𝑂𝑃𝑠 = 𝑐' ) 𝑛 ) log(𝑛)
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How many data points do we really need?
Pr
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m
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e 
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 𝒔

Processes 𝒑
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10

4                     8                   16                 32                64
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Learning cost-effective sampling strategies
[Ritter et al., IPDPS’20]

Function generator

Noise module

Reinforcement learning 
agent

Selected
parameter
values

Synthetic
measurement

Extra-P

Evaluation

Feedback

Prediction

Ground truth

Empirical model
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Heuristic parameter-value selection strategy

Measure min. 
amount points 

required for modeling

Create a model using 
Extra-P

Gather on additional 
measurement 

(assumed to be 
cheapest)

Create new model

Final model

If cost 
< 

budget

yes

no
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Synthetic data evaluation

5%
10%

15%
20%

-5%
-10%

-15%
-20%

Training Evaluation
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Synthetic evaluation results

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f a
cc

ur
at

e 
m

od
el

s*

1 parameter, 5% noise 2 parameters, 5% noise

Measurements used / Percentage of cost
5 / 100% 9 / 12% 11 / 13% 15 / 17% 25 / 100%

Repetitions
2    4    6
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Synthetic evaluation results
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Measurements used / Percentage of cost
13 / 1.7% 15 / 1.8% 25 / 2.2% 75 / 11% 125 / 100%

Repetitions
2    4    6

3 parameters, 5% noise
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Synthetic evaluation results
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4 parameters, 5% noise

Measurements used / Percentage of cost

17 / 0.1% 18 / 0.12% 125 / 1.2% 250 / 4.2% 625 / 100%

Repetitions
2    4    6

25 / 0.17%
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Synthetic evaluation results
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4 parameters, 1% noise

Measurements used / Percentage of cost

17 / 0.1% 18 / 0.12% 125 / 1.2% 250 / 4.2% 625 / 100%

Repetitions
2    4    6

25 / 0.17%



9/16/20  |  Technical University of Darmstadt, Germany  |  Felix Wolf |  28

Case studies

Application #Parameters Extra 
points

Cost savings 
[%]

Prediction 
error [%]

FASTEST 2 0 70 2

Kripke 3 3 99 39

Relearn 2 0 85 11

0
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Parameter selection

• The more paramters the more experiments

• Modeling parameters without performance impact is harmful 

Taint 
analysis

Program

Input parameters Which 
parameter 
influences 

which
function?

Taint labels
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PerfTaint – Taint-based performance 
modeling

Annotate parameters

register_variable(“size”, &size);

Static 
loop 

analysis

Dynamic 
taint 

analysis

DataFlowSanitizer
+ control-flow taint propagation 

• Parameter effects & 
dependencies

• Constant functions
[Copik et al., submitted, 
Code: spcl/perf-taint@ GitHub]
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PerfTaint - White-box performance modeling 

Black box (before) White box (now)
Parameter 
identification

Manual Taint coverage 

Experiment 
design

Vary all parameters blindly Exploit knowledge of 
parameter influence and 
dependencies

Instrumentation All functions Only functions with 
parameter influence

Model generation All functions Only functions with 
parameter influence
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Case study – LULESH & MILC
Influence of program parameters

LULESH Total p size regions iters balance cost p, 
size

Functions 349 2 40 15 1 1 2 40

Loops 275 2 78 29 1 1 2 78

MILC Total p size trajecs warms 
steps

nrest. 
niter

mass,
beta 
nfl. 

u0 p, 
size

Functions 621 54 53 12 9 6 1 4 56

Loops 874 187 161 39 31 15 1 7 196
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PerfTaint –
Taint-based performance modeling

Overhead • 50% less overhead
(rel. to Score-P default filter)

Quality

Validity

• Constant functions
• Perturbation

Hardware contention
P1 P2 P3 P4

Memory

Segmented behavior
int foo(int a) {
if (a < 4) 

kernel_linear(a); 
else

kernel_log(a); 
}

3×10!"𝑝#.% + 10!%𝑠"2.4×10!&𝑝#.'%𝑠"
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Noise-resilient adaptive modeling

DNNs often better at guessing models in the presence of noise

Performance 
measurements Estimate noise

Noise 
low?

Final 
model

Classic 
(sparse) 
modeler

Select best 

DNN 
modeler

Performance 
model

yes

no

Performance 
model

Transfer Learning
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Noise-resilient adaptive modeling
Synthetic evaluation

0%

5%

10%

15%

20%

25%

30%

20% 50% 100%
Noise level

Relative error

Adaptive Sparse

0%

20%

40%

60%

80%

20% 50% 100%
Noise level

Lead exponents within 
1/3 of ground truth

Adaptive Sparse

2 parameters

(at unseen point, two ticks in each dimension)

0
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Gaussian processes

Goal: better tradeoff between accuracy and cost for specific models

f(x)

x
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4               8              16            32             64
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Source: https://scikit-learn.org/stable/_images/sphx_glr_plot_gpr_noisy_targets_001.png
Buitinc et al.: API design for machine learning software: experiences from the scikit-learn project, 2013.



9/16/20  |  Technical University of Darmstadt, Germany  |  Felix Wolf |  37

New version of Extra-P in Q4 2020

• Includes the new sparse modeler

• Available as a Python package

• No interfaces or external dependencies

• Support for Windows and Linux (Ubuntu)

• Easy installation via pip

• BSD 3-Clause License



9/16/20  |  Technical University of Darmstadt, Germany  |  Felix Wolf |  38

Selected papers

Topic Bibliography
Foundation (single 
model paramter)

Alexandru Calotoiu, Torsten Hoefler, Marius Poke, Felix Wolf: Using Automated 
Performance Modeling to Find Scalability Bugs in Complex Codes. SC13.

MPI case study Sergei Shudler, Yannick Berens, Alexandru Calotoiu, Torsten Hoefler, Alexandre 
Strube, Felix Wolf: Engineering Algorithms for Scalability through Continuous 
Validation of Performance Expectations. IEEE TPDS, 30(8):1768–1785, 2019.

Multiple model 
parameters

Alexandru Calotoiu, David Beckingsale, Christopher W. Earl, Torsten Hoefler, Ian 
Karlin, Martin Schulz, Felix Wolf: Fast Multi-Parameter Performance Modeling. IEEE 
Cluster 2016.

Co-design Alexandru Calotoiu, Alexander Graf, Torsten Hoefler, Daniel Lorenz, Sebastian Rinke, 
Felix Wolf: Lightweight Requirements Engineering for Exascale Co-design. IEEE 
Cluster 2018.

Task-graph 
modeling

Sergei Shudler, Alexandru Calotoiu, Torsten Hoefler, Felix Wolf: Isoefficiency in 
Practice: Configuring and Understanding the Performance of Task-based 
Applications. PPoPP 2017.

Learning cost-
effective sampling 
strategies

Marcus Ritter, Alexandru Calotoiu, Sebastian Rinke, Thorsten Reimann, Torsten
Hoefler, Felix Wolf: Learning Cost-Effective Sampling Strategies for Empirical 
Performance Modeling. IPDPS 2020.

Taint-based 
performance 
modeling

Marcin Copik, Alexandru Calotoiu, Tobias Grosser, Nicolas Wicki, Felix Wolf, Torsten
Hoefler: Extracting Clean Performance Models from Tainted Programs. Submitted.



9/16/20  |  Technical University of Darmstadt, Germany  |  Felix Wolf |  39

Thank you!


