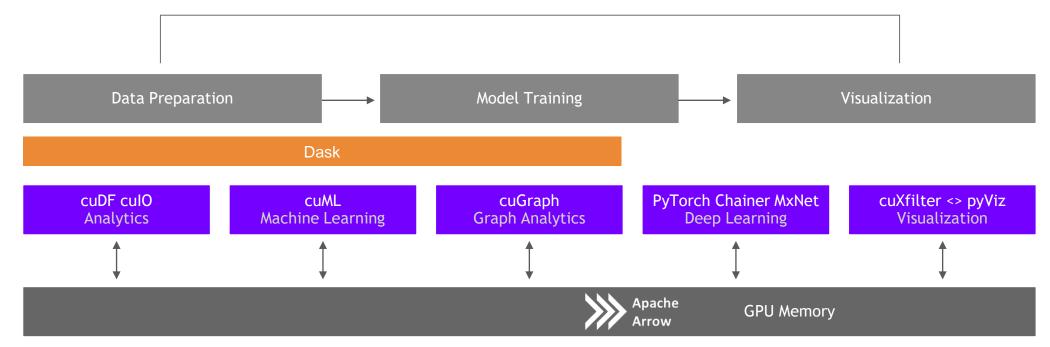
RAPIDS: OPEN SOURCE PYTHON DATA SCIENCE WITH GPU ACCELERATION AND DASK

Joe Eaton, Sept 24, 2019 Principal Sys Engineer for Graph and Data Analytics, NVIDIA

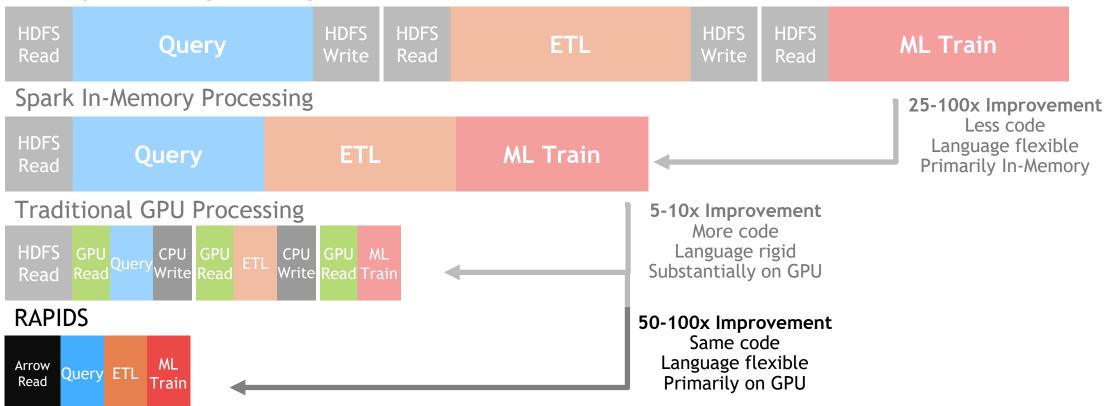
RAPIDS End-to-End Accelerated GPU Data Science



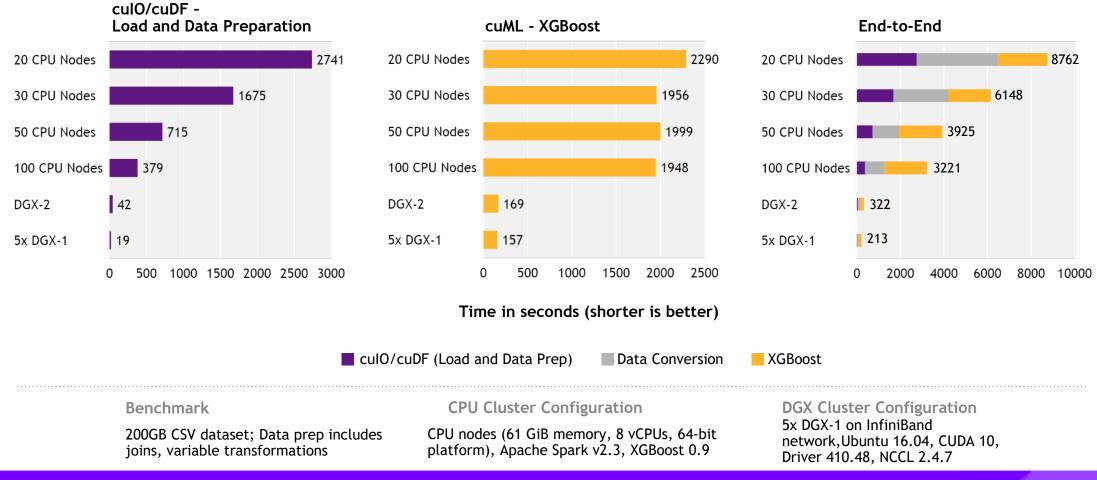
Data Processing Evolution

Faster data access, less data movement

Hadoop Processing, Reading from disk

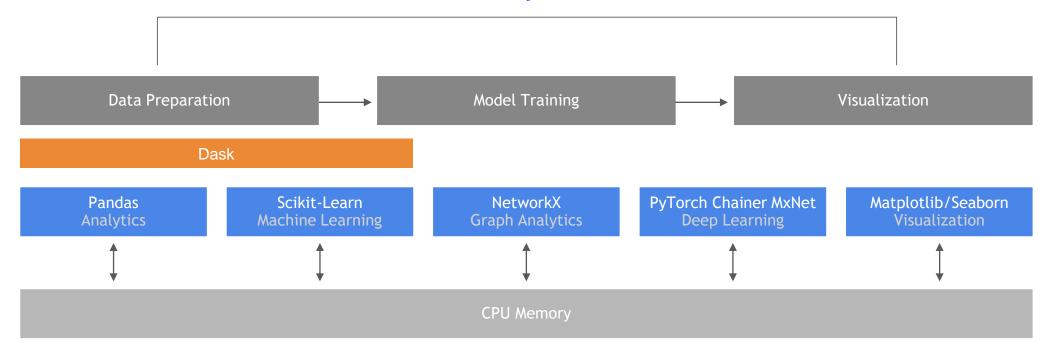


Faster Speeds, Real-World Benefits

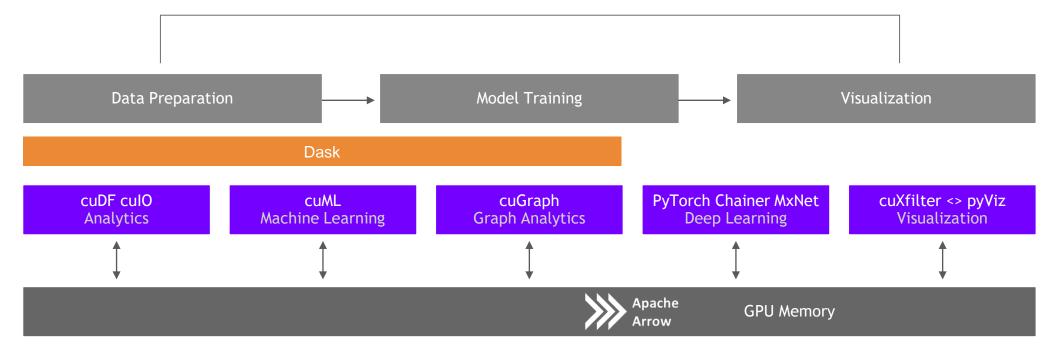


RAPIDS Core

Open Source Data Science Ecosystem Familiar Python APIs

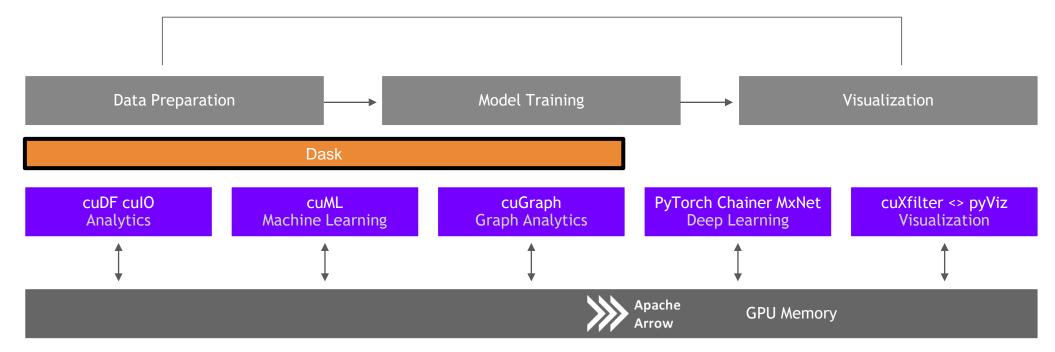


RAPIDS End-to-End Accelerated GPU Data Science



Dask

RAPIDS Scaling RAPIDS with Dask



Why Dask?

PyData Native

- **Easy Migration:** Built on top of NumPy, Pandas Scikit-Learn, etc.
- Easy Training: With the same APIs
- **Trusted:** With the same developer community

Deployable

- HPC: SLURM, PBS, LSF, SGE
- Cloud: Kubernetes
- Hadoop/Spark: Yarn

Easy Scalability

- Easy to install and use on a laptop
- Scales out to thousand-node clusters

Popular

 Most common parallelism framework today in the PyData and SciPy community

K8s Native API Quickstart

```
from dask_kubernetes import KubeCluster
cluster = KubeCluster.from_yaml('worker-spec.yml')
cluster.scale_up(10) # specify number of nodes explicitly
cluster.adapt(minimum=1, maximum=100) # or dynamically scale based on current workload
```

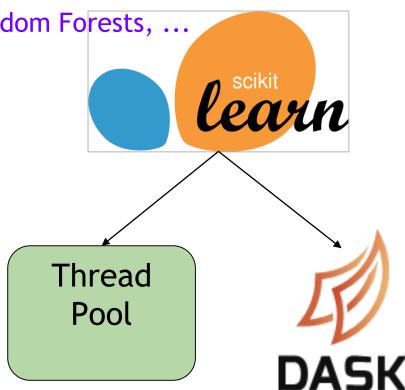
Parallel Scikit-Learn

For Hyper-Parameter Optimization, Random Forests, ...

• Same API

from scikit_learn.externals import joblib
with joblib.parallel_backend('dask'):
 estimator = RandomForest()
 estimator.fit(data, labels)

- Same exact code, just wrap with a decorator
- Replaces default threaded execution with Dask Allowing scaling onto clusters
- Available in most Scikit-Learn algorithms where joblib is used



Parallel Python

For custom systems, ML algorithms, workflow engines

• Parallelize existing codebases

```
results = {}
for x in X:
  for y in Y:
    if x < y:
    result = f(x, y)
    else:
        result = g(x, y)
    results.append(result)</pre>
```

Parallel Python

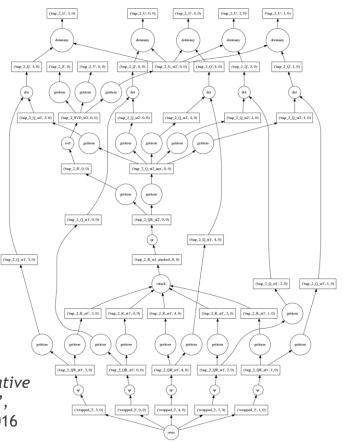
For custom systems, ML algorithms, workflow engines

• Parallelize existing codebases

```
f = dask.delayed(f)
g = dask.delayed(g)
results = {}
for x in X:
  for y in Y:
    if x < y:
       result = f(x, y)
    else:
       result = g(x, y)
    results.append(result)</pre>
```

result = dask.compute(results)

M Tepper, G Sapiro "Compressed nonnegative matrix factorization is fast and accurate", IEEE Transactions on Signal Processing, 2016



Dask Connects Python users to Hardware

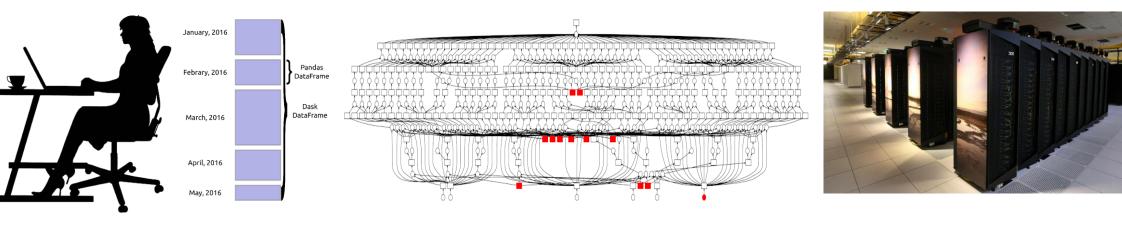
High Productivity Even on Large Scale Problems

Execute on distributed hardware

User

Dask Connects Python users to Hardware

High Productivity Even on Large Scale Problems



User

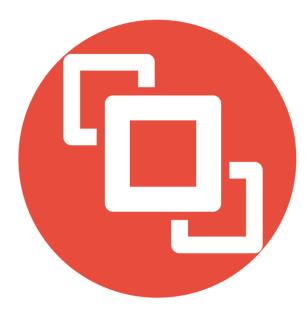
Writes high level code (NumPy/Pandas/Scikit-Learn)

Turns into a task graph

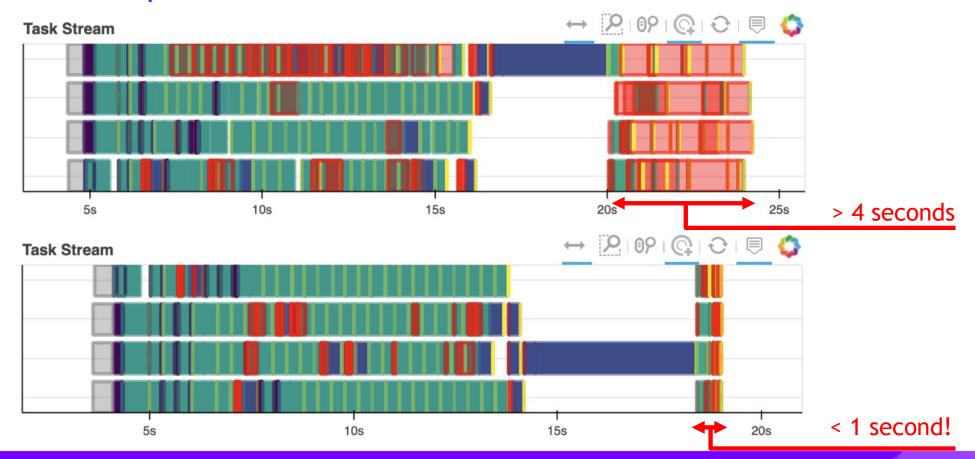
Executes on distributed hardware

Why OpenUCX? Bringing hardware accelerated communications to Dask

- TCP sockets are slow!
- UCX provides uniform access to transports (TCP, InfiniBand, shared memory, NVLink)
- Python bindings for UCX (ucx-py) in the works <u>https://github.com/rapidsai/ucx-py</u>
- Will provide best communication performance, to Dask based on available hardware on nodes/cluster



Challenges: Communication OpenUCX Performance - Before and After



Scale up with RAPIDS

RAPIDS and Others

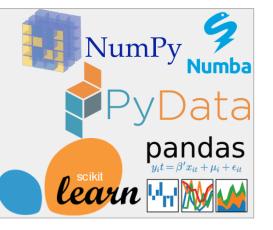
Accelerated on single GPU

NumPy -> CuPy/PyTorch/.. Pandas -> cuDF Scikit-Learn -> cuML Numba -> Numba

PyData

NumPy, Pandas, Scikit-Learn, Numba and many more

Single CPU core In-memory data



Scale out with RAPIDS + Dask with OpenUCX

RAPIDS and Others

Accelerated on single GPU

NumPy -> CuPy/PyTorch/.. Pandas -> cuDF Scikit-Learn -> cuML Numba -> Numba

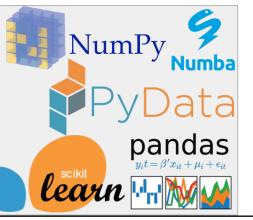
RAPIDS + Dask with OpenUCX

Multi-GPU On single Node (DGX) Or across a cluster

PyData

NumPy, Pandas, Scikit-Learn, Numba and many more

Single CPU core In-memory data



Dask

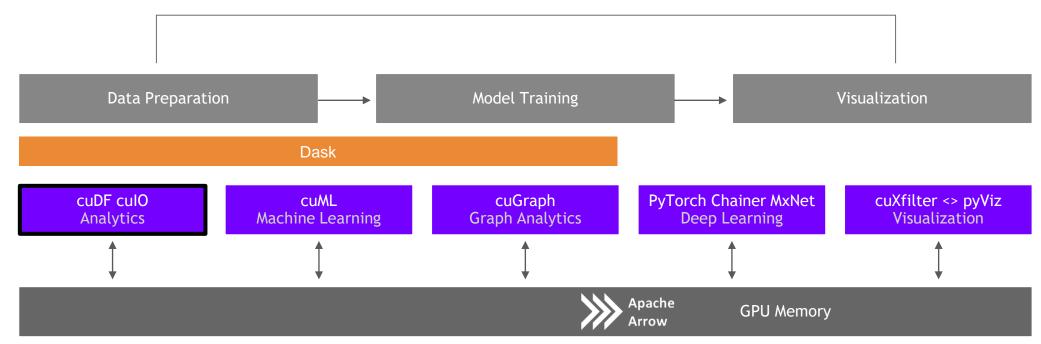
Multi-core and Distributed PyData

NumPy -> Dask Array Pandas -> Dask DataFrame Scikit-Learn -> Dask-ML ... -> Dask Futures

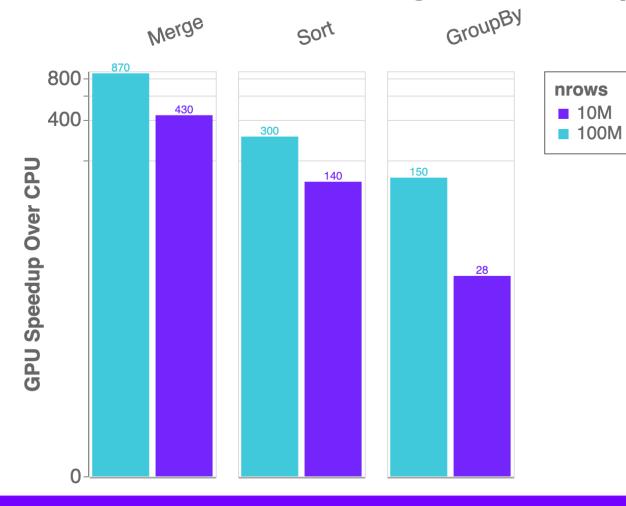
Scale out / Parallelize

RAPIDS

GPU Accelerated data wrangling and feature engineering



Benchmarks: single-GPU Speedup vs. Pandas



cuDF v0.9, Pandas 0.24.2

Running on NVIDIA DGX-1:

GPU: NVIDIA Tesla V100 32GB CPU: Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

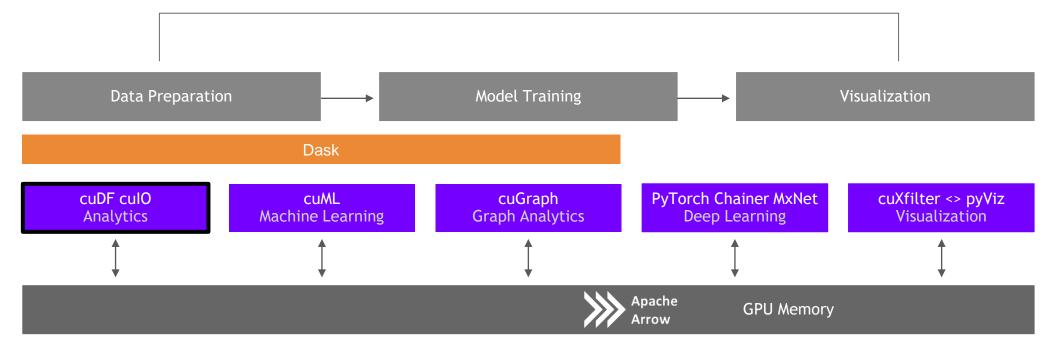
Benchmark Setup:

DataFrames: 2x int32 columns key columns, 3x int32 value columns

Merge: inner

GroupBy: count, sum, min, max calculated for each value column

ETL - the Backbone of Data Science cuDF is not the end of the story



ETL - the Backbone of Data Science String Support

Current v0.9 String Support

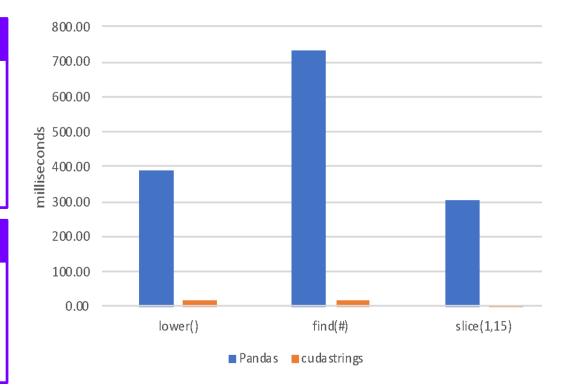
•Regular Expressions

- •Element-wise operations
 - Split, Find, Extract, Cat, Typecasting, etc...
- •String GroupBys, Joins

•Categorical columns fully on GPU

Future v0.10+ String Support

- Combining cuStrings into libcudf
- Extensive performance optimization
- More Pandas String API compatibility
- JIT-compiled String UDFs



Extraction is the Cornerstone culO for Faster Data Loading

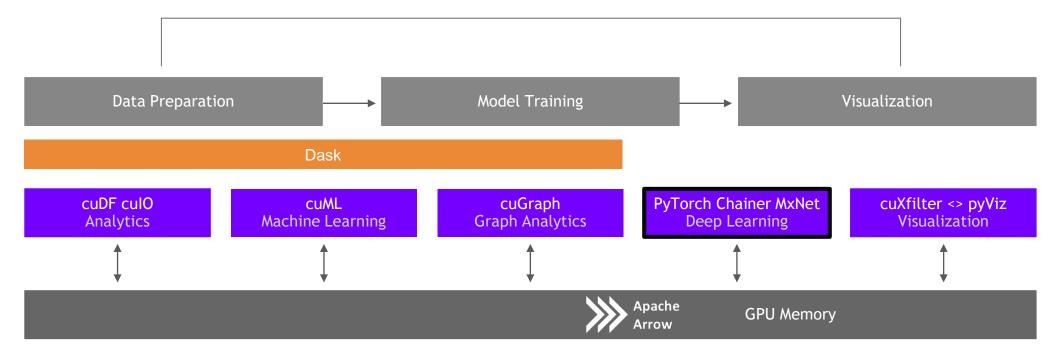
- Follow Pandas APIs and provide >10x speedup
- CSV Reader v0.2, CSV Writer v0.8
- Parquet Reader v0.7, Parquet Writer v0.10
- ORC Reader v0.7, ORC Writer v0.10
- JSON Reader v0.8
- Avro Reader v0.9
- GPU Direct Storage integration in progress for ³ bypassing PCIe bottlenecks!
- Key is GPU-accelerating both parsing and decompression wherever possible

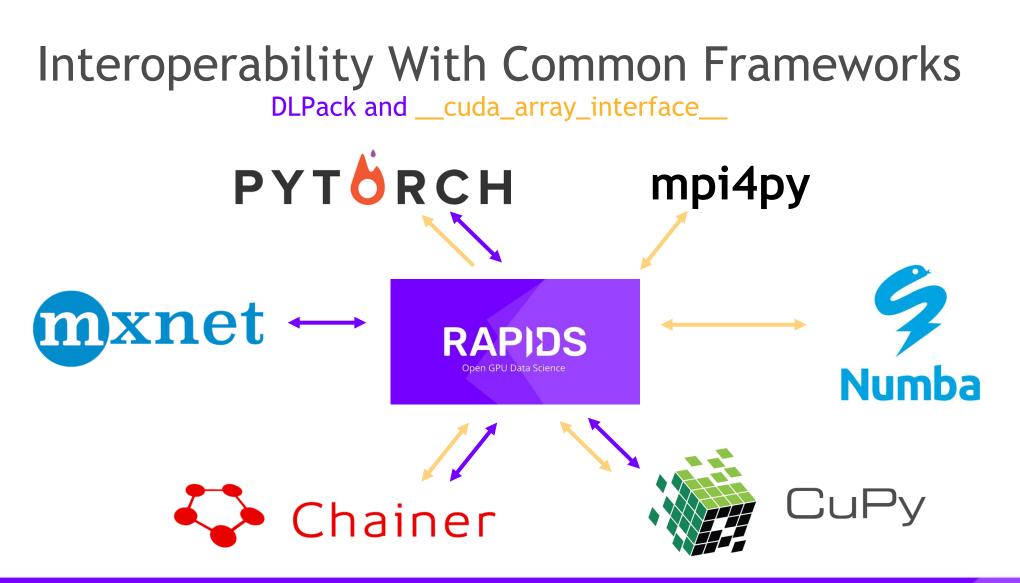
]:	<pre>import pandas, cudf</pre>
]:	<pre>%time len(pandas.read_csv('data/nyc/yellow_tripdata_2015-01.csv'))</pre>
	CPU times: user 25.9 s, sys: 3.26 s, total: 29.2 s Wall time: 29.2 s
:]:	12748986
]:	<pre>%time len(cudf.read_csv('data/nyc/yellow_tripdata_2015-01.csv'))</pre>
	CPU times: user 1.59 s, sys: 372 ms, total: 1.96 s Wall time: 2.12 s
]:	12748986
]:	!du -hs data/nyc/yellow_tripdata_2015-01.csv
	1.9G data/nyc/yellow_tripdata_2015-01.csv

Source: Apache Crail blog: SQL Performance: Part 1 - Input File Formats

ETL is not just DataFrames!

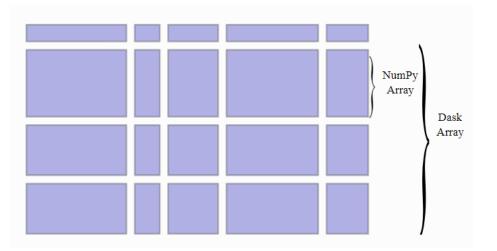
RAPIDS Building bridges into the array ecosystem



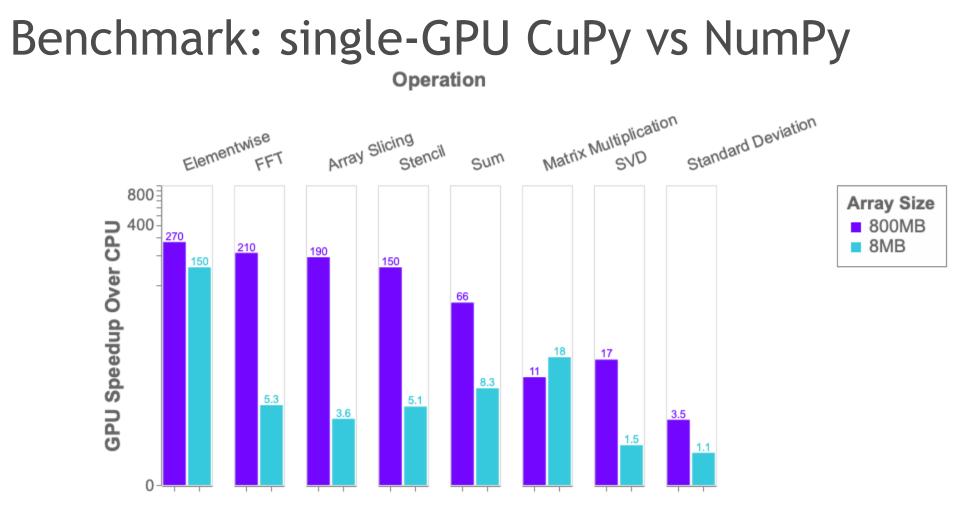


ETL - Arrays and DataFrames

Dask and CUDA Python arrays

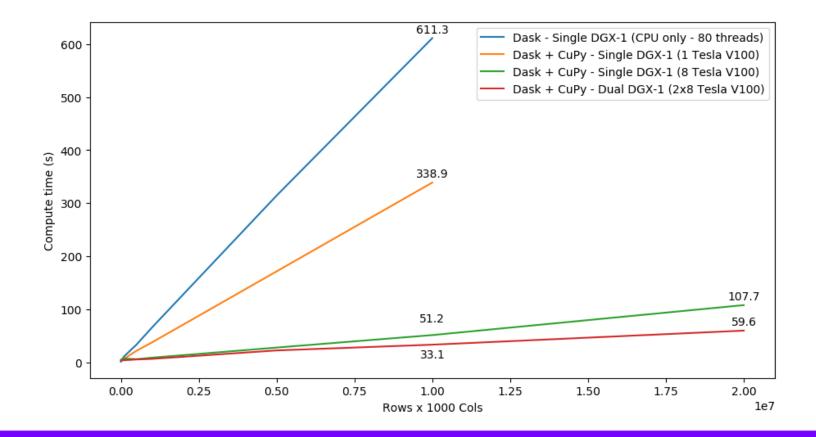


- Scales NumPy to distributed clusters
- Used in climate science, imaging, HPC analysis up to 100TB size
- Now seamlessly accelerated with GPUs

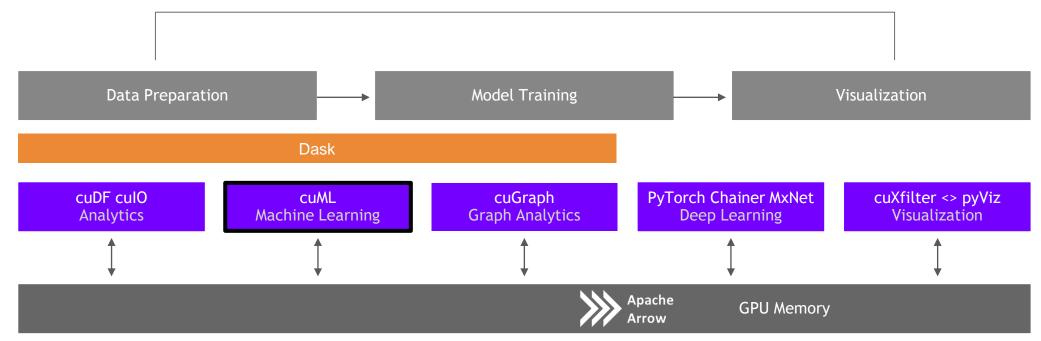


More details: <u>https://blog.dask.org/2019/06/27/single-gpu-cupy-benchmarks</u>

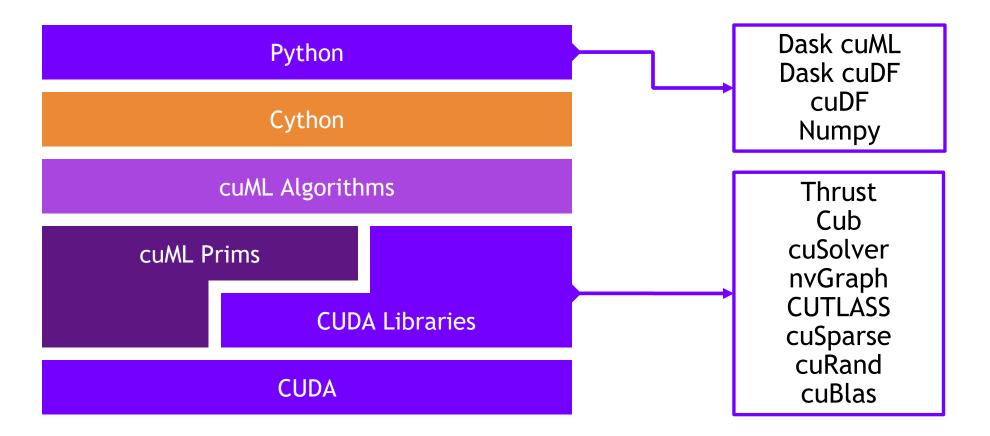
SVD Benchmark Dask and CuPy Doing Complex Workflows



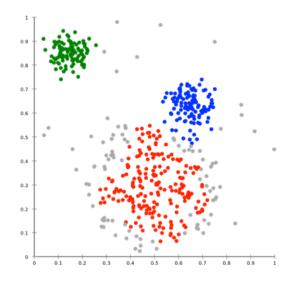
Machine Learning More models more problems



ML Technology Stack

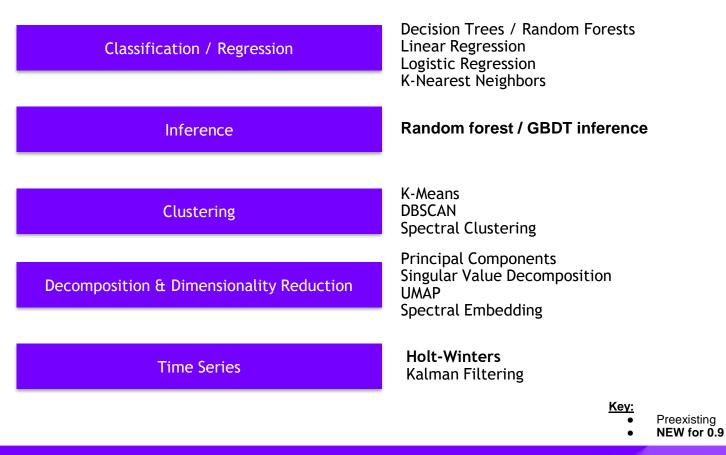


Algorithms GPU-accelerated Scikit-Learn



Hyper-parameter Tuning

More to come!



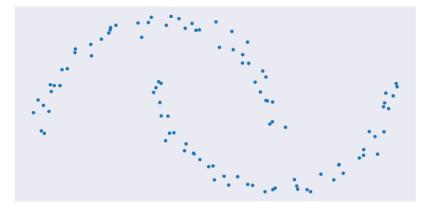
RAPIDS matches common Python APIs CPU-Based Clustering

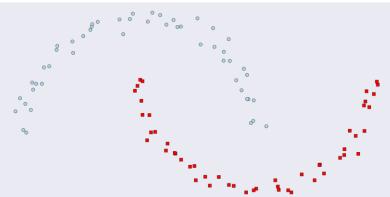
```
from sklearn.datasets import make_moons
import pandas
```

```
X = pandas.DataFrame({'fea%d'%i: X[:, i]
for i in range(X.shape[1])})
```

```
from sklearn.cluster import DBSCAN
dbscan = DBSCAN(eps = 0.3, min_samples = 5)
dbscan.fit(X)
```

```
y hat = dbscan.predict(X)
```

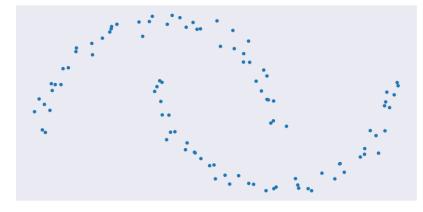


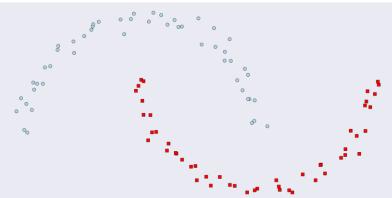


RAPIDS matches common Python APIs GPU-Accelerated Clustering

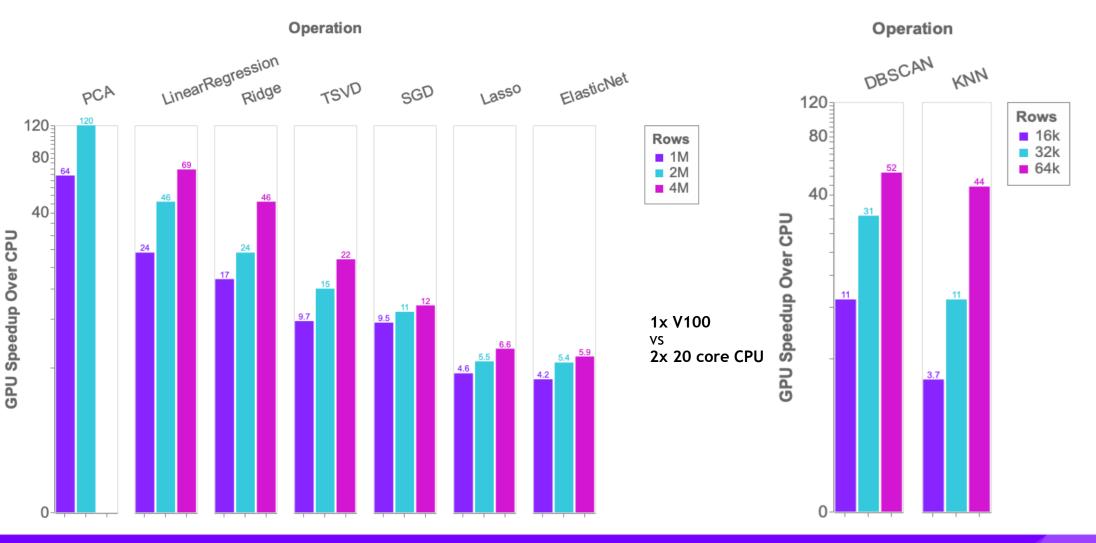
```
from sklearn.datasets import make_moons
import cudf
```

```
from cuml import DBSCAN
dbscan = DBSCAN(eps = 0.3, min_samples = 5)
dbscan.fit(X)
y_hat = dbscan.predict(X)
```





Benchmarks: single-GPU cuML vs scikit-learn



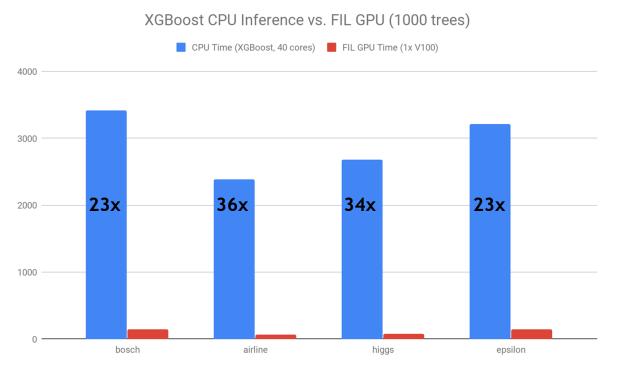
Forest Inference at 100M inferences/sec

Taking models from training to production

cuML's Forest Inference Library

Works with existing models from XGBoost and LightGBM today

- Single V100 GPU can infer up to 34x faster than XGBoost dual-CPU node
- Over 100 million forest inferences per sec (with 1000 trees) on a DGX-1



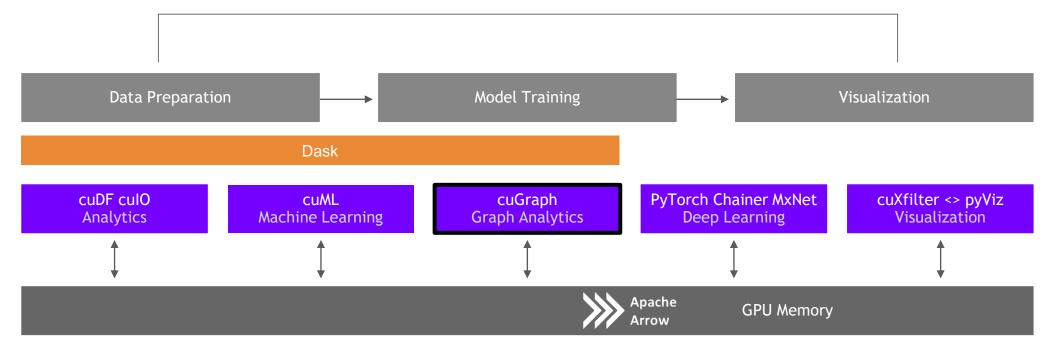
Road to 1.0 August 2019 - RAPIDS 0.9

cuML	Single-GPU	Multi-GPU	Multi-Node-Multi-GPU
Gradient Boosted Decision Trees (GBDT)			
GLM			
Logistic Regression			
Random Forest			
K-Means			
K-NN			
DBSCAN			
UMAP			
Holt-Winters			
Kalman Filter			
t-SNE			
Principal Components			
Singular Value Decomposition			

Road to 1.0 March 2020 - RAPIDS 0.14

cuML	Single-GPU	Multi-GPU	Multi-Node-Multi-GPU
Gradient Boosted Decision Trees (GBDT)			
GLM			
Logistic Regression			
Random Forest			
K-Means			
K-NN			
DBSCAN			
UMAP			
ARIMA & Holt-Winters			
Kalman Filter			
t-SNE			
Principal Components			
Singular Value Decomposition			

Graph Analytics More connections more insights



GOALS AND BENEFITS OF CUGRAPH

Focus on Features and User Experience

Breakthrough Performance

- Up to 500 million edges on a single 32GB GPU
- Multi-GPU support for scaling into the billions of edges

Multiple APIs

- Python: Familiar NetworkX-like API
- C/C++: lower-level granular control for application developers

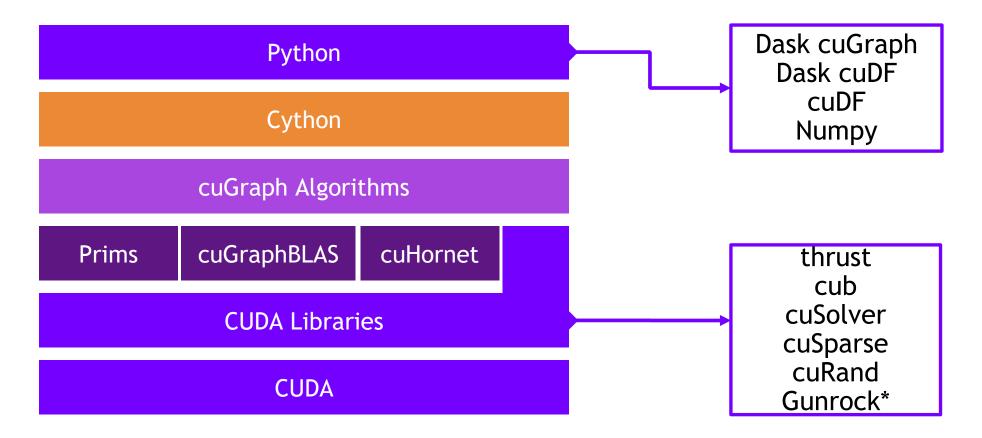
Seamless Integration with cuDF and cuML

Property Graph support via DataFrames

Growing Functionality

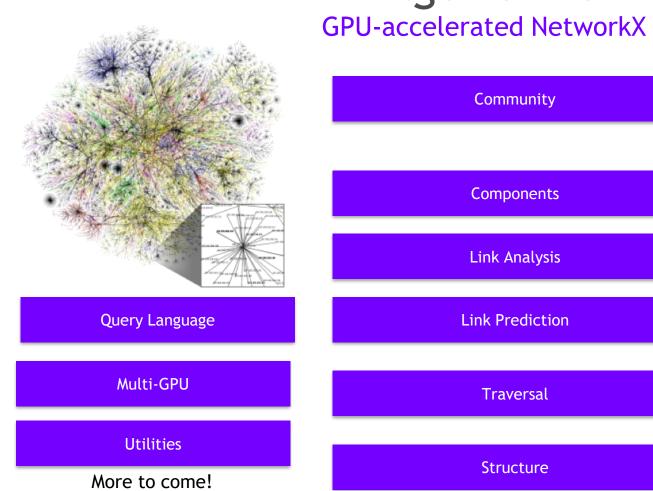
• Extensive collection of algorithm, primitive, and utility functions

Graph Technology Stack



* Gunrock is from UC Davis

47



Algorithms

	Community	Spectral Clustering Balanced-Cut Modularity Maximization Louvain Subgraph Extraction Triangle Counting
te te te te te te te te te te te te te t	Components	Weakly Connected Components Strongly Connected Components
	Link Analysis	Page Rank (Multi-GPU) Personal Page Rank
	Link Prediction	Jaccard Weighted Jaccard Overlap Coefficient
	Traversal	Single Source Shortest Path (SSSP) Breadth First Search (BFS)
	Structure	COO-to-CSR (Multi-GPU) Transpose Renumbering

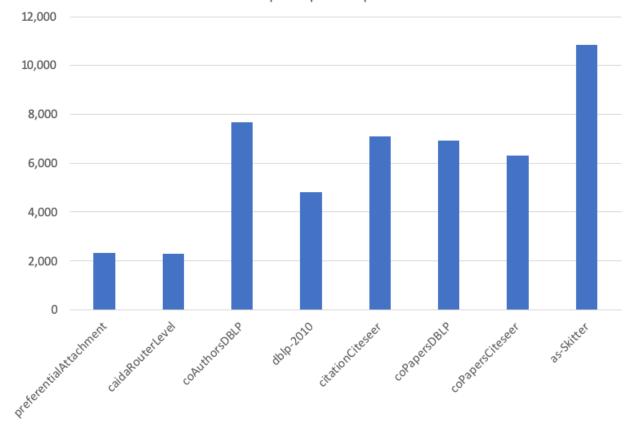
Louvain Single Run

```
G = cugraph.Graph()
G.add_edge_list(
   gdf["src_0"],gdf["dst_0"],
   gdf["data"])
```

```
df, mod = cugraph.nvLouvain(G)
```

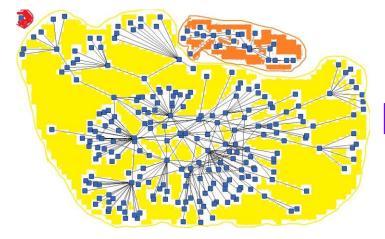
Dataset	Nodes	Edges
preferentialAttachment	100,000	999,970
caidaRouterLevel	192,244	1,218,132
coAuthorsDBLP	299,067	299,067
dblp-2010	326,186	1,615,400
citationCiteseer	268,495	2,313,294
coPapersDBLP	540,486	30,491,458
coPapersCiteseer	434,102	32,073,440
as-Skitter	1,696,415	22,190,596

Performance Speedup: cuGraph vs NetworkX

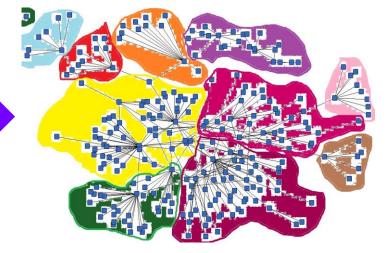


Hierarchical Louvain clusters

See More of the Whole Picture



Check the size of each cluster If size> threshold : recluster



Sub-Communities

Dominant Community

Multi-GPU PageRank Performance

PageRank portion of the HiBench benchmark suite, DGX-2 Hardware

HiBench Scale	Vertices	Edges	CSV File (GB)	# of GPUs	PageRank for 3 Iterations (secs)
Huge	5,000,000	198,000,000	3	1	1.1
BigData	50,000,000	1,980,000,000	34	3	5.1
BigData x2	100,000,000	4,000,000,000	69	6	9.0
BigData x4	200,000,000	8,000,000,000	146	12	18.2
BigData x8	400,000,000	16,000,000,000	300	16	31.8

Road to 1.0 August 2019 - RAPIDS 0.9

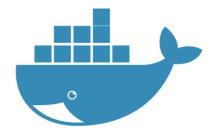
cuGraph	Single-GPU	Multi-GPU	Multi-Node-Multi-GPU
Jaccard and Weighted Jaccard			
Page Rank			
Personal Page Rank			
SSSP			
BFS			
Triangle Counting			
Subgraph Extraction			
Katz Centrality			
Betweenness Centrality			
Connected Components (Weak and Strong)			
Louvain			
Spectral Clustering			
InfoMap			
K-Cores			

Road to 1.0 March 2020 - RAPIDS 0.14

cuGraph	Single-GPU	Multi-GPU	Multi-Node-Multi-GPU
Jaccard and Weighted Jaccard			
Page Rank			
Personal Page Rank			
SSSP			
BFS			
Triangle Counting			
Subgraph Extraction			
Katz Centrality			
Betweenness Centrality			
Connected Components (Weak and Strong)			
Louvain			
Spectral Clustering			
InfoMap			
K-Cores			

RAPIDS How do I get the software?

- <u>https://github.com/rapidsai</u>
- https://anaconda.org/rapidsai/



- <u>https://ngc.nvidia.com/registry/nvidia-</u> <u>rapidsai-rapidsai</u>
- <u>https://hub.docker.com/r/rapidsai/rapidsai/</u>

Ecosystem Partners CONTRIBUTORS

🔿 ANACONDA. 🖉 BLAZINGDB 🕞 UNROCK 🐼 DVIDIA. 🔬

QUANSIGHT Walmart 🔆

ADOPTERS

OPEN SOURCE

DASK

G 🖲 A i 🔗 Numba

