
Joe Eaton, Sept 24, 2019

Principal Sys Engineer for Graph and Data Analytics, NVIDIA

RAPIDS:OPEN SOURCE
PYTHON DATA SCIENCE
WITH GPU ACCELERATION
AND DASK

2

RAPIDS
End-to-End Accelerated GPU Data Science

cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

Dask

3

Data Processing Evolution
Faster data access, less data movement

25-100x Improvement
Less code

Language flexible
Primarily In-Memory

HDFS

Read

HDFS

Write

HDFS

Read

HDFS

Write

HDFS

Read
Query ETL ML Train

HDFS

Read
Query ETL ML Train

HDFS

Read
GPU

Read
Query

CPU

Write

GPU

Read
ETL

CPU

Write

GPU

Read

ML

Train

Arrow

Read
ETL

ML

Train

5-10x Improvement
More code

Language rigid
Substantially on GPU

50-100x Improvement
Same code

Language flexible
Primarily on GPU

RAPIDS

Traditional GPU Processing

Hadoop Processing, Reading from disk

Spark In-Memory Processing

Query

4

Faster Speeds, Real-World Benefits
cuIO/cuDF –
Load and Data Preparation cuML - XGBoost

Time in seconds (shorter is better)

cuIO/cuDF (Load and Data Prep) Data Conversion XGBoost

Benchmark

200GB CSV dataset; Data prep includes
joins, variable transformations

CPU Cluster Configuration

CPU nodes (61 GiB memory, 8 vCPUs, 64-bit
platform), Apache Spark v2.3, XGBoost 0.9

DGX Cluster Configuration
5x DGX-1 on InfiniBand
network,Ubuntu 16.04, CUDA 10,
Driver 410.48, NCCL 2.4.7

8762

6148

3925

3221

322

213

End-to-End

5

RAPIDS Core

6

Pandas
Analytics

CPU Memory

Data Preparation VisualizationModel Training

Scikit-Learn
Machine Learning

NetworkX
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

Matplotlib/Seaborn
Visualization

Open Source Data Science Ecosystem
Familiar Python APIs

Dask

7

cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

RAPIDS
End-to-End Accelerated GPU Data Science

Dask

8

Dask

9

cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

RAPIDS
Scaling RAPIDS with Dask

Dask

10

Why Dask?

• Easy Migration: Built on top of NumPy, Pandas

Scikit-Learn, etc.

• Easy Training: With the same APIs

• Trusted: With the same developer community

PyData Native

• Easy to install and use on a laptop

• Scales out to thousand-node clusters

Easy Scalability

• Most common parallelism framework today

in the PyData and SciPy community

Popular

• HPC: SLURM, PBS, LSF, SGE

• Cloud: Kubernetes

• Hadoop/Spark: Yarn

Deployable

11

K8s Native API
Quickstart

12

● Same API

from scikit_learn.externals import joblib

with joblib.parallel_backend(‘dask’):

estimator = RandomForest()

estimator.fit(data, labels)

● Same exact code, just wrap with a decorator

● Replaces default threaded execution with Dask

Allowing scaling onto clusters

● Available in most Scikit-Learn algorithms where joblib is

used

Parallel Scikit-Learn

Thread

Pool

For Hyper-Parameter Optimization, Random Forests, ...

13

For custom systems, ML algorithms, workflow engines

● Parallelize existing codebases

results = {}

for x in X:

for y in Y:

if x < y:

result = f(x, y)

else:

result = g(x, y)

results.append(result)

Parallel Python

14

Parallel Python

For custom systems, ML algorithms, workflow engines

● Parallelize existing codebases

f = dask.delayed(f)

g = dask.delayed(g)

results = {}

for x in X:

for y in Y:

if x < y:

result = f(x, y)

else:

result = g(x, y)

results.append(result)

result = dask.compute(results) M Tepper, G Sapiro “Compressed nonnegative

matrix factorization is fast and accurate”,

IEEE Transactions on Signal Processing, 2016

15

Dask Connects Python users to Hardware
High Productivity Even on Large Scale Problems

User
Execute on distributed

hardware

16

Dask Connects Python users to Hardware
High Productivity Even on Large Scale Problems

User
Writes high level code

(NumPy/Pandas/Scikit-Learn)
Turns into a task graph Executes on distributed

hardware

17

Why OpenUCX?

• TCP sockets are slow!

• UCX provides uniform access to transports (TCP,

InfiniBand, shared memory, NVLink)

• Python bindings for UCX (ucx-py) in the works

https://github.com/rapidsai/ucx-py

• Will provide best communication performance, to Dask

based on available hardware on nodes/cluster

Bringing hardware accelerated communications to Dask

https://github.com/rapidsai/ucx-py

18

Challenges: Communication
OpenUCX Performance – Before and After

> 4 seconds

< 1 second!

19

Scale up with RAPIDS

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

NumPy, Pandas, Scikit-Learn,
Numba and many more

Single CPU core
In-memory data

PyData

S
c
a
le

 U
p
 /

 A
c
c
e
le

ra
te

20

Scale out with RAPIDS + Dask with OpenUCX

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

Multi-GPU
On single Node (DGX)
Or across a cluster

RAPIDS + Dask with
OpenUCX

S
c
a
le

 U
p
 /

 A
c
c
e
le

ra
te

Scale out / Parallelize

NumPy, Pandas, Scikit-Learn,
Numba and many more

Single CPU core
In-memory data

PyData

Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask

21

cuDF

22

cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

RAPIDS
GPU Accelerated data wrangling and feature engineering

Dask

23

cuDF v0.9, Pandas 0.24.2

Running on NVIDIA DGX-1:

GPU: NVIDIA Tesla V100 32GB

CPU: Intel(R) Xeon(R) CPU E5-2698 v4

@ 2.20GHz

Benchmark Setup:

DataFrames: 2x int32 columns key columns,

3x int32 value columns

Merge: inner

GroupBy: count, sum, min, max calculated

for each value column

Benchmarks: single-GPU Speedup vs. Pandas

24

cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

Dask

ETL - the Backbone of Data Science
cuDF is not the end of the story

25

ETL - the Backbone of Data Science
String Support

•Regular Expressions

•Element-wise operations
• Split, Find, Extract, Cat, Typecasting, etc…

•String GroupBys, Joins

•Categorical columns fully on GPU

Current v0.9 String Support

• Combining cuStrings into libcudf

• Extensive performance optimization

• More Pandas String API compatibility

• JIT-compiled String UDFs

Future v0.10+ String Support

26

• Follow Pandas APIs and provide >10x speedup

• CSV Reader - v0.2, CSV Writer v0.8

• Parquet Reader – v0.7, Parquet Writer v0.10

• ORC Reader – v0.7, ORC Writer v0.10

• JSON Reader - v0.8

• Avro Reader - v0.9

• GPU Direct Storage integration in progress for

bypassing PCIe bottlenecks!

• Key is GPU-accelerating both parsing and

decompression wherever possible Source: Apache Crail blog: SQL Performance: Part 1 - Input File Formats

Extraction is the Cornerstone
cuIO for Faster Data Loading

http://crail.incubator.apache.org/blog/2018/08/sql-p1.html

27

ETL is not just DataFrames!

28

GPU Memory

Data Preparation VisualizationModel Training

RAPIDS
Building bridges into the array ecosystem

Dask

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

29

Interoperability With Common Frameworks
DLPack and __cuda_array_interface__

mpi4py

30

ETL – Arrays and DataFrames
Dask and CUDA Python arrays

• Scales NumPy to distributed clusters

• Used in climate science, imaging, HPC analysis

up to 100TB size

• Now seamlessly accelerated with GPUs

31

Benchmark: single-GPU CuPy vs NumPy

More details: https://blog.dask.org/2019/06/27/single-gpu-cupy-benchmarks

https://blog.dask.org/2019/06/27/single-gpu-cupy-benchmarks

32

SVD Benchmark
Dask and CuPy Doing Complex Workflows

34

cuML

35

GPU Memory

Data Preparation VisualizationModel Training

Dask

Machine Learning
More models more problems

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

36

ML Technology Stack

Python

Cython

cuML Algorithms

cuML Prims

CUDA Libraries

CUDA

Dask cuML
Dask cuDF

cuDF
Numpy

Thrust
Cub

cuSolver
nvGraph
CUTLASS
cuSparse
cuRand
cuBlas

37

Algorithms
GPU-accelerated Scikit-Learn

Classification / Regression

Inference

Clustering

Decomposition & Dimensionality Reduction

Time Series

Decision Trees / Random Forests
Linear Regression
Logistic Regression
K-Nearest Neighbors

Random forest / GBDT inference

K-Means
DBSCAN
Spectral Clustering

Principal Components
Singular Value Decomposition
UMAP
Spectral Embedding

Holt-Winters
Kalman Filtering

Cross Validation

More to come!

Hyper-parameter Tuning
Key:

● Preexisting
● NEW for 0.9

38

RAPIDS matches common Python APIs

from sklearn.cluster import DBSCAN

dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)

Find Clusters

from sklearn.datasets import make_moons

import pandas

X, y = make_moons(n_samples=int(1e2),

noise=0.05, random_state=0)

X = pandas.DataFrame({'fea%d'%i: X[:, i]

for i in range(X.shape[1])})

CPU-Based Clustering

39

RAPIDS matches common Python APIs

from cuml import DBSCAN

dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)

Find Clusters

from sklearn.datasets import make_moons

import cudf

X, y = make_moons(n_samples=int(1e2),

noise=0.05, random_state=0)

X = cudf.DataFrame({'fea%d'%i: X[:, i]

for i in range(X.shape[1])})

GPU-Accelerated Clustering

40

Benchmarks: single-GPU cuML vs scikit-learn

1x V100
vs
2x 20 core CPU

41

cuML’s Forest Inference Library

Works with existing models
from XGBoost and LightGBM today

● Single V100 GPU can infer up to 34x

faster than XGBoost dual-CPU node

● Over 100 million forest inferences

per sec (with 1000 trees) on a DGX-1

Forest Inference at 100M inferences/sec

Taking models from training to production

23x 36x 34x 23x

42

Road to 1.0
August 2019 - RAPIDS 0.9

cuML Single-GPU Multi-GPU Multi-Node-Multi-GPU

Gradient Boosted Decision Trees (GBDT)

GLM

Logistic Regression

Random Forest

K-Means

K-NN

DBSCAN

UMAP

Holt-Winters

Kalman Filter

t-SNE

Principal Components

Singular Value Decomposition

43

Road to 1.0
March 2020 - RAPIDS 0.14

cuML Single-GPU Multi-GPU Multi-Node-Multi-GPU

Gradient Boosted Decision Trees (GBDT)

GLM

Logistic Regression

Random Forest

K-Means

K-NN

DBSCAN

UMAP

ARIMA & Holt-Winters

Kalman Filter

t-SNE

Principal Components

Singular Value Decomposition

44

cuGraph

45

GPU Memory

Data Preparation VisualizationModel Training

Dask

Graph Analytics
More connections more insights

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

46

GOALS AND BENEFITS OF CUGRAPH
Focus on Features and User Experience

• Property Graph support via DataFrames

Seamless Integration with cuDF and cuML

• Up to 500 million edges on a single 32GB GPU

• Multi-GPU support for scaling into the billions

of edges

Breakthrough Performance

• Python: Familiar NetworkX-like API

• C/C++: lower-level granular control for

application developers

Multiple APIs

• Extensive collection of algorithm, primitive,

and utility functions

Growing Functionality

47

Graph Technology Stack

Python

Cython

cuGraph Algorithms

Prims

CUDA Libraries

CUDA

Dask cuGraph
Dask cuDF

cuDF
Numpy

thrust
cub

cuSolver
cuSparse
cuRand

Gunrock*

cuGraphBLAS cuHornet

nvGRAPH has been Opened Sourced and integrated into cuGraph. A legacy version is available in a RAPIDS GitHub repo * Gunrock is from UC Davis

48

Algorithms
GPU-accelerated NetworkX

Community

Components

Link Analysis

Link Prediction

Traversal

Structure

Spectral Clustering
Balanced-Cut
Modularity Maximization

Louvain
Subgraph Extraction
Triangle Counting

Jaccard
Weighted Jaccard
Overlap Coefficient

Single Source Shortest Path (SSSP)
Breadth First Search (BFS)

COO-to-CSR (Multi-GPU)
Transpose
Renumbering

Multi-GPU

More to come!

Utilities

Weakly Connected Components
Strongly Connected Components

Page Rank (Multi-GPU)
Personal Page Rank

Query Language

49

Louvain Single Run

Dataset Nodes Edges

preferentialAttachment 100,000 999,970

caidaRouterLevel 192,244 1,218,132

coAuthorsDBLP 299,067 299,067

dblp-2010 326,186 1,615,400

citationCiteseer 268,495 2,313,294

coPapersDBLP 540,486 30,491,458

coPapersCiteseer 434,102 32,073,440

as-Skitter 1,696,415 22,190,596

G = cugraph.Graph()

G.add_edge_list(

gdf["src_0"],gdf["dst_0"],

gdf["data"])

df, mod = cugraph.nvLouvain(G)

50

See More of the Whole Picture

Hierarchical Louvain clusters

Dominant
Community

Check the size of each cluster
If size> threshold : recluster

Dict = {‘0’ : initial clusters ,
‘1’ : reclustering on data from ‘0’ ,
‘2’ : reclustering on data from ‘1’ …… }

Sub-Communities

51

Multi-GPU PageRank Performance
PageRank portion of the HiBench benchmark suite, DGX-2 Hardware

HiBench Scale Vertices Edges CSV File

(GB)

of GPUs PageRank for

3 Iterations (secs)

Huge 5,000,000 198,000,000 3 1 1.1

BigData 50,000,000 1,980,000,000 34 3 5.1

BigData x2 100,000,000 4,000,000,000 69 6 9.0

BigData x4 200,000,000 8,000,000,000 146 12 18.2

BigData x8 400,000,000 16,000,000,000 300 16 31.8

52

Road to 1.0
August 2019 - RAPIDS 0.9

cuGraph Single-GPU Multi-GPU Multi-Node-Multi-GPU

Jaccard and Weighted Jaccard

Page Rank

Personal Page Rank

SSSP

BFS

Triangle Counting

Subgraph Extraction

Katz Centrality

Betweenness Centrality

Connected Components (Weak and Strong)

Louvain

Spectral Clustering

InfoMap

K-Cores

53

Road to 1.0
March 2020 - RAPIDS 0.14

cuGraph Single-GPU Multi-GPU Multi-Node-Multi-GPU

Jaccard and Weighted Jaccard

Page Rank

Personal Page Rank

SSSP

BFS

Triangle Counting

Subgraph Extraction

Katz Centrality

Betweenness Centrality

Connected Components (Weak and Strong)

Louvain

Spectral Clustering

InfoMap

K-Cores

54

• https://ngc.nvidia.com/registry/nvidia-

rapidsai-rapidsai

• https://hub.docker.com/r/rapidsai/rapidsai/

• https://github.com/rapidsai

• https://anaconda.org/rapidsai/

RAPIDS
How do I get the software?

https://ngc.nvidia.com/registry/nvidia-rapidsai-rapidsai
https://hub.docker.com/r/rapidsai/rapidsai/
https://github.com/rapidsai
https://anaconda.org/rapidsai/

55

Community

56

Ecosystem Partners

