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RAPIDS
End-to-End Accelerated GPU Data Science

cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

Dask
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Data Processing Evolution
Faster data access, less data movement

25-100x Improvement
Less code

Language flexible
Primarily In-Memory
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5-10x Improvement
More code

Language rigid
Substantially on GPU

50-100x Improvement
Same code

Language flexible
Primarily on GPU

RAPIDS

Traditional GPU Processing

Hadoop Processing, Reading from disk

Spark In-Memory Processing

Query
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Faster Speeds, Real-World Benefits
cuIO/cuDF –
Load and Data Preparation cuML - XGBoost

Time in seconds (shorter is better)

cuIO/cuDF (Load and Data Prep) Data Conversion XGBoost

Benchmark

200GB CSV dataset; Data prep includes 
joins, variable transformations

CPU Cluster Configuration

CPU nodes (61 GiB memory, 8 vCPUs, 64-bit 
platform), Apache Spark v2.3, XGBoost 0.9

DGX Cluster Configuration
5x DGX-1 on InfiniBand 
network,Ubuntu 16.04, CUDA 10, 
Driver 410.48, NCCL 2.4.7

8762

6148

3925

3221

322

213

End-to-End
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RAPIDS Core
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Pandas
Analytics

CPU Memory

Data Preparation VisualizationModel Training

Scikit-Learn
Machine Learning

NetworkX
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

Matplotlib/Seaborn
Visualization

Open Source Data Science Ecosystem
Familiar Python APIs

Dask
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cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

RAPIDS
End-to-End Accelerated GPU Data Science

Dask
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Dask
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cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

RAPIDS
Scaling RAPIDS with Dask

Dask
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Why Dask?

• Easy Migration: Built on top of NumPy, Pandas 

Scikit-Learn, etc.

• Easy Training: With the same APIs

• Trusted: With the same developer community

PyData Native

• Easy to install and use on a laptop

• Scales out to thousand-node clusters

Easy Scalability

• Most common parallelism framework today 

in the PyData and SciPy community

Popular

• HPC: SLURM, PBS, LSF, SGE

• Cloud: Kubernetes

• Hadoop/Spark: Yarn

Deployable
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K8s Native API
Quickstart
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● Same API

from scikit_learn.externals import joblib

with joblib.parallel_backend(‘dask’):

estimator = RandomForest()

estimator.fit(data, labels)

● Same exact code, just wrap with a decorator

● Replaces default threaded execution with Dask

Allowing scaling onto clusters

● Available in most Scikit-Learn algorithms where joblib is 

used

Parallel Scikit-Learn

Thread

Pool

For Hyper-Parameter Optimization, Random Forests, ...
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For custom systems, ML algorithms, workflow engines

● Parallelize existing codebases

results = {}

for x in X:

for y in Y:

if x < y:

result = f(x, y)

else:

result = g(x, y)

results.append(result)

Parallel Python
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Parallel Python

For custom systems, ML algorithms, workflow engines

● Parallelize existing codebases

f = dask.delayed(f)

g = dask.delayed(g)

results = {}

for x in X:

for y in Y:

if x < y:

result = f(x, y)

else:

result = g(x, y)

results.append(result)

result = dask.compute(results) M Tepper, G Sapiro “Compressed nonnegative 

matrix factorization is fast and accurate”, 

IEEE Transactions on Signal Processing, 2016
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Dask Connects Python users to Hardware
High Productivity Even on Large Scale Problems

User
Execute on distributed 

hardware
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Dask Connects Python users to Hardware
High Productivity Even on Large Scale Problems

User
Writes high level code

(NumPy/Pandas/Scikit-Learn)
Turns into a task graph Executes on distributed 

hardware
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Why OpenUCX?

• TCP sockets are slow!

• UCX provides uniform access to transports (TCP, 

InfiniBand, shared memory, NVLink)

• Python bindings for UCX (ucx-py) in the works 

https://github.com/rapidsai/ucx-py

• Will provide best communication performance, to Dask

based on available hardware on nodes/cluster

Bringing hardware accelerated communications to Dask

https://github.com/rapidsai/ucx-py
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Challenges: Communication
OpenUCX Performance – Before and After

> 4 seconds

< 1 second!
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Scale up with RAPIDS

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

NumPy, Pandas, Scikit-Learn, 
Numba and many more

Single CPU core
In-memory data

PyData
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Scale out with RAPIDS + Dask with OpenUCX

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

Multi-GPU
On single Node (DGX)
Or across a cluster

RAPIDS + Dask with 
OpenUCX

S
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 /
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te

Scale out / Parallelize

NumPy, Pandas, Scikit-Learn, 
Numba and many more

Single CPU core
In-memory data

PyData

Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask
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cuDF
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cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

RAPIDS
GPU Accelerated data wrangling and feature engineering

Dask
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cuDF v0.9, Pandas 0.24.2

Running on NVIDIA DGX-1:

GPU: NVIDIA Tesla V100 32GB

CPU: Intel(R) Xeon(R) CPU E5-2698 v4 

@ 2.20GHz

Benchmark Setup:

DataFrames: 2x int32 columns key columns, 

3x int32 value columns

Merge: inner

GroupBy: count, sum, min, max calculated 

for each value column

Benchmarks: single-GPU Speedup vs. Pandas
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cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

Dask

ETL - the Backbone of Data Science
cuDF is not the end of the story
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ETL - the Backbone of Data Science
String Support

•Regular Expressions

•Element-wise operations
• Split, Find, Extract, Cat, Typecasting, etc…

•String GroupBys, Joins

•Categorical columns fully on GPU

Current v0.9 String Support

• Combining cuStrings into libcudf

• Extensive performance optimization

• More Pandas String API compatibility

• JIT-compiled String UDFs

Future v0.10+ String Support
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• Follow Pandas APIs and provide >10x speedup

• CSV Reader - v0.2, CSV Writer v0.8

• Parquet Reader – v0.7, Parquet Writer v0.10

• ORC Reader – v0.7, ORC Writer v0.10

• JSON Reader - v0.8

• Avro Reader - v0.9

• GPU Direct Storage integration in progress for 

bypassing PCIe bottlenecks!

• Key is GPU-accelerating both parsing and 

decompression wherever possible Source: Apache Crail blog: SQL Performance: Part 1 - Input File Formats

Extraction is the Cornerstone
cuIO for Faster Data Loading

http://crail.incubator.apache.org/blog/2018/08/sql-p1.html
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ETL is not just DataFrames!
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GPU Memory

Data Preparation VisualizationModel Training

RAPIDS
Building bridges into the array ecosystem

Dask

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization
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Interoperability With Common Frameworks
DLPack and __cuda_array_interface__

mpi4py
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ETL – Arrays and DataFrames
Dask and CUDA Python arrays

• Scales NumPy to distributed clusters

• Used in climate science, imaging, HPC analysis 

up to 100TB size

• Now seamlessly accelerated with GPUs
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Benchmark: single-GPU CuPy vs NumPy

More details: https://blog.dask.org/2019/06/27/single-gpu-cupy-benchmarks

https://blog.dask.org/2019/06/27/single-gpu-cupy-benchmarks
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SVD Benchmark
Dask and CuPy Doing Complex Workflows
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cuML



35

GPU Memory

Data Preparation VisualizationModel Training

Dask

Machine Learning
More models more problems

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization
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ML Technology Stack

Python

Cython

cuML Algorithms

cuML Prims

CUDA Libraries

CUDA

Dask cuML
Dask cuDF

cuDF
Numpy

Thrust
Cub

cuSolver
nvGraph
CUTLASS
cuSparse
cuRand
cuBlas
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Algorithms
GPU-accelerated Scikit-Learn

Classification / Regression

Inference

Clustering

Decomposition & Dimensionality Reduction

Time Series

Decision Trees / Random Forests
Linear Regression
Logistic Regression
K-Nearest Neighbors

Random forest / GBDT inference

K-Means
DBSCAN
Spectral Clustering

Principal Components
Singular Value Decomposition
UMAP
Spectral Embedding

Holt-Winters
Kalman Filtering

Cross Validation

More to come!

Hyper-parameter Tuning
Key:

● Preexisting
● NEW for 0.9
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RAPIDS matches common Python APIs

from sklearn.cluster import DBSCAN

dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)

Find Clusters

from sklearn.datasets import make_moons

import pandas

X, y = make_moons(n_samples=int(1e2), 

noise=0.05, random_state=0)

X = pandas.DataFrame({'fea%d'%i: X[:, i]

for i in range(X.shape[1])})

CPU-Based Clustering
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RAPIDS matches common Python APIs

from cuml import DBSCAN

dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)

Find Clusters

from sklearn.datasets import make_moons

import cudf

X, y = make_moons(n_samples=int(1e2), 

noise=0.05, random_state=0)

X =   cudf.DataFrame({'fea%d'%i: X[:, i]

for i in range(X.shape[1])})

GPU-Accelerated Clustering
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Benchmarks: single-GPU cuML vs scikit-learn

1x V100 
vs 
2x 20 core CPU
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cuML’s Forest Inference Library

Works with existing models
from XGBoost and LightGBM today 

● Single V100 GPU can infer up to 34x 

faster than XGBoost dual-CPU node

● Over 100 million forest inferences 

per sec (with 1000 trees) on a DGX-1

Forest Inference at 100M inferences/sec

Taking models from training to production

23x 36x 34x 23x
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Road to 1.0 
August 2019 - RAPIDS 0.9

cuML Single-GPU Multi-GPU Multi-Node-Multi-GPU

Gradient Boosted Decision Trees (GBDT)

GLM

Logistic Regression

Random Forest

K-Means

K-NN

DBSCAN

UMAP

Holt-Winters

Kalman Filter

t-SNE

Principal Components

Singular Value Decomposition
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Road to 1.0 
March 2020 - RAPIDS 0.14

cuML Single-GPU Multi-GPU Multi-Node-Multi-GPU

Gradient Boosted Decision Trees (GBDT)

GLM

Logistic Regression

Random Forest

K-Means

K-NN

DBSCAN

UMAP

ARIMA & Holt-Winters

Kalman Filter

t-SNE

Principal Components

Singular Value Decomposition
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cuGraph
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GPU Memory

Data Preparation VisualizationModel Training

Dask

Graph Analytics
More connections more insights

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization
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GOALS AND BENEFITS OF CUGRAPH
Focus on Features and User Experience

• Property Graph support via DataFrames

Seamless Integration with cuDF and cuML

• Up to 500 million edges on a single 32GB GPU

• Multi-GPU support for scaling into the billions 

of edges

Breakthrough Performance 

• Python: Familiar NetworkX-like API

• C/C++: lower-level granular control for 

application developers

Multiple APIs

• Extensive collection of algorithm, primitive, 

and utility functions

Growing Functionality
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Graph Technology Stack

Python

Cython

cuGraph Algorithms

Prims

CUDA Libraries

CUDA

Dask cuGraph
Dask cuDF

cuDF
Numpy

thrust
cub

cuSolver
cuSparse
cuRand

Gunrock*

cuGraphBLAS cuHornet

nvGRAPH has been Opened Sourced and integrated into cuGraph.  A legacy version is available in a RAPIDS GitHub repo * Gunrock is from UC Davis
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Algorithms
GPU-accelerated NetworkX

Community

Components

Link Analysis

Link Prediction

Traversal

Structure

Spectral Clustering
Balanced-Cut
Modularity Maximization

Louvain
Subgraph Extraction
Triangle Counting

Jaccard
Weighted Jaccard
Overlap Coefficient

Single Source Shortest Path (SSSP)
Breadth First Search (BFS)

COO-to-CSR (Multi-GPU)
Transpose
Renumbering

Multi-GPU

More to come!

Utilities

Weakly Connected Components
Strongly Connected Components

Page Rank (Multi-GPU)
Personal Page Rank

Query Language
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Louvain Single Run

Dataset Nodes Edges

preferentialAttachment 100,000 999,970

caidaRouterLevel 192,244 1,218,132

coAuthorsDBLP 299,067 299,067

dblp-2010 326,186 1,615,400

citationCiteseer 268,495 2,313,294

coPapersDBLP 540,486 30,491,458

coPapersCiteseer 434,102 32,073,440

as-Skitter 1,696,415 22,190,596

G = cugraph.Graph()

G.add_edge_list( 

gdf["src_0"],gdf["dst_0"],

gdf["data"])

df, mod = cugraph.nvLouvain(G)
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See More of the Whole Picture

Hierarchical Louvain clusters

Dominant
Community

Check the size of each cluster
If size> threshold : recluster

Dict = {‘0’ : initial clusters ,
‘1’ : reclustering on data from ‘0’ ,
‘2’ : reclustering on data from ‘1’ …… } 

Sub-Communities
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Multi-GPU PageRank Performance
PageRank portion of the HiBench benchmark suite, DGX-2 Hardware

HiBench Scale Vertices Edges CSV File 

(GB)

# of GPUs PageRank for

3 Iterations (secs)

Huge 5,000,000 198,000,000 3 1 1.1

BigData 50,000,000 1,980,000,000 34 3 5.1

BigData x2 100,000,000 4,000,000,000 69 6 9.0

BigData x4 200,000,000 8,000,000,000 146 12 18.2

BigData x8 400,000,000 16,000,000,000 300 16 31.8
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Road to 1.0 
August 2019 - RAPIDS 0.9

cuGraph Single-GPU Multi-GPU Multi-Node-Multi-GPU

Jaccard and Weighted Jaccard

Page Rank

Personal Page Rank

SSSP

BFS

Triangle Counting

Subgraph Extraction

Katz Centrality

Betweenness Centrality

Connected Components (Weak and Strong)

Louvain

Spectral Clustering

InfoMap

K-Cores
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Road to 1.0 
March 2020 - RAPIDS 0.14

cuGraph Single-GPU Multi-GPU Multi-Node-Multi-GPU

Jaccard and Weighted Jaccard

Page Rank

Personal Page Rank

SSSP

BFS

Triangle Counting

Subgraph Extraction

Katz Centrality

Betweenness Centrality

Connected Components (Weak and Strong)

Louvain

Spectral Clustering

InfoMap

K-Cores
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• https://ngc.nvidia.com/registry/nvidia-

rapidsai-rapidsai

• https://hub.docker.com/r/rapidsai/rapidsai/

• https://github.com/rapidsai

• https://anaconda.org/rapidsai/

RAPIDS
How do I get the software?

https://ngc.nvidia.com/registry/nvidia-rapidsai-rapidsai
https://hub.docker.com/r/rapidsai/rapidsai/
https://github.com/rapidsai
https://anaconda.org/rapidsai/
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Community
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Ecosystem Partners


